CARBON EMISSIONS AND SEQUESTRATION IN FORESTS: CASE STUDIES FROM SEVEN DEVELOPING COUNTRIES

VOLUME 2: BRAZIL

Philip M. Fearnside

Series Editors: Willy Makundi and Jayant Sathaye

August 1992

DRAFT

SEPA

Climate Change Division Environmental Protection Agency Washington, DC, USA

Energy and Environment Division Lawrence Berkeley Laboratory Berkeley, CA, USA

CARBON EMISSIONS AND SEQUESTRATION IN FORESTS: CASE STUDIES FROM SEVEN DEVELOPING COUNTRIES

VOLUME 2: GREENHOUSE GAS EMISSIONS FROM DEFORESTRATION IN THE BRAZILIAN AMAZON

Philip M. Fearnside

Departmento de Ecologia Instituto Nacional de Pásquisas de Amazonia (INPA) C.P. 478 69.011 Manaus-Amazonia, Brazil

Series Editors: Willy Makundi and Jayant Sathaye

Energy and Environment Division Energy Analysis Program Lawrence Berkeley Laboratory

August 1992

DRAFT

Climate Change Division Environmental Protection Agency Washington, DC, USA

e.

Energy and Environment Division Lawrence Berkeley Laboratory Berkeley, CA, USA

This work was supported by the U.S. Environmental Protection Agency, Office of Policy Analysis, Climate Change Division, through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

DISCLAIMER

1 ...

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE Contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, VA 22161

Lawrence Berkeley Laboratory is an equal opportunity employer.

TABLE OF CONTENTS

1. INTRODUCTION	. 1
2. EXTENT AND RATE OF DEFORESTATION	. 3
3. BIOMASS OF AMAZONIAN FORESTS	. 6
4. TRANSFORMATIONS OF GROSS CARBON STOCKS 4.1. Land Uses Replacing the Forest 4.2. Fate of Biomass Carbon Stocks	21
5. SOURCES AND SINKS OF GREENHOUSE GASES 5.1. Burning	33 40 40 42 44
6. GLOBAL WARMING IMPACT OF EMISSIONS	45
7. BRAZIL'S CONTRIBUTION TO GLOBAL WARMING	50
8. DEFORESTATION AND GREENHOUSE POLICY	51
Notes	61
Acknowledgements	61
Literature Cited	62

LIST OF TABLES

- Table 1 Extent of deforestation in the Brazilian Legal Amazon
- Table 2 Rate of deforestation in the Brazilian Legal Amazon
- Table 3 Amazon forest biomass controversy
- Table 4 Vegetation types in the Brazilian Legal Amazon
- Table 5 Area of natural vegetation present in the Brazilian Legal Amazon
- Table 6 Area of protected vegetation in the Brazilian Legal Amazon
- Table 7 Approximate 1990 clearing rate in each ecosystem type in the Brazilian Legal Amazon

; ,

- Table 8 Parameters for deriving biomass estimates from RADAMBRASIL and FAO forest volume data
- Table 9 Direct measurements of forest biomass and components
- Table 10 Below-ground biomass in Amazonian forests
- Table 11 Surveyed area of ecosystem types in the Brazilian Legal Amazon
- Table 12 Biomass per hectare: means by ecosystem type, vegetation type and state.
- Table 13 Approximate biomass cleared in 1990 in each ecosystem type in the Brazilian Legal Amazon
- Table 14 Cerrado biomass
- Table 15 Parameters for transformations of gross carbon stocks
- Table 16 Markov matrix for land use transformations after deforestation
- Table 17 Replacement vegetation weighted biomass calculation
- Table 18 Parameters for carbon emissions
- Table 19 Parameters for other sources of greenhouse gases from land-use change
- Table 20 Trace gas parameters

- Table 21 Soil carbon parameters and calculations
- Table 22 Factors not considered in current calculation
- Table 23 Low methane scenario: Greenhouse gas emissions by source for 1990 clearing in the Legal Amazon
- Table 24 High methane scenario: Greenhouse gas emissions by source for 1990 clearing in the Legal 'Amazon
- Table 25 Global warming potentials of trace gases
- Table 26 Greenhouse emissions from 1990 deforestation
- Table 27 Deforestation rates in countries with tropical moist forests
- Table 28 Rough calculation of biomass of tropical forests presently being cleared outside of Brazil
- Table 29 Rough calculation of global greenhouse emissions from tropical deforestation
- Table 30 Contribution of deforestation in Brazilian Amazonia to global greenhouse emissions
- Table 31 Land distribution in the Brazilian Legal Amazon
- Table 32 Greenhouse impact per capita

PREFACE

In January 1990, scientists and policymakers from around the world convened for a meeting of the Intergovernmental Panel on Climate Change (IPCC) in São Paulo, Brazil, to continue the ongoing discussions on emissions of greenhouse gases and global climate change. As part of the effort to further understand the sources of carbon dioxide (CO_2) and other major greenhouse gases, LBL and the University of Sao Paulo, with support from the U.S. Environmental Protection Agency, organized a workshop on tropical forestry and global climate change which was attended by the IPCC conference participants. Discussions at the workshop led to the establishment of the Tropical Forestry and Global Climate Change Research Network (F-7). The countries taking part in the F-7 Network -- Brazil, China, India, Indonesia, Malaysia, Mexico, Nigeria and Thailand -- possess among the largest tracts of the Earth's tropical forests and together experience the bulk of tropical deforestation.

The following research objectives were identified as the F-7 Network's priorities:

- 1. To improve and expand the body of knowledge about the extent of tropical deforestation through the use of available tools, including remote-sensing imagery, detailed biomass measurements and existing models.
- 2. To explore the dynamics of forest land use within the context of individual country's social and economic structures.
- 3. To identify alternative response options aimed at stemming deforestation and promoting sustainable land-use practices while maintaining each country's economic well-being. Meeting this objective includes carrying out an assessment of the economic costs of implementing various mitigative policies.

One of the strategies of this project was to rely on the work of indigenous researchers and institutions from each of the participating countries. This approach allowed for the integration of more precise, on-site information, some of which had not been previously published, into the more general and universally available base of knowledge. The Lawrence Berkeley Laboratory (LBL), which employed a similar approach to carry out a study on carbon emissions from energy use in developing countries (LDCs) (see Sathaye and Ketoff 1991), coordinated the work of the researchers and provided scientific and institutional support for the F-7 participants. The U.S. Environmental Protection Agency (EPA) financed the Network's work.

The information contained in this report represents the results of the first phase of the F-7 project, which had the explicit aim of providing quantitative data on forestry-related carbon emissions in the F-7 countries. This report contains the results of the first phase of the research effort. The next stage of the process will involve an assessment of response options in the forestry sector and the economics of undertaking these measures.

LIST OF FIGURES

- Fig. 1 Brazil's Legal Amazon region.
- Fig. 2 Forest and non-forest in the Brazilian Legal Amazon (Source: Fearnside and Ferraz, nd).
- Fig. 3 Annual transition probabilities between land uses in a deforested landscape (Source: Fearnside, nd-b).
- Fig. 4 Carbon transformations through a typical 10-year sequence of clearing, burning and reburning (Updated from: Fearnside, 1991).
- Fig. 5 Partioning of carbon between type of release and emitted gas (Low methane scenario) (Updated from: Fearnside, 1991).

ABSTRACT

Deforestation in Brazilian Amazonia through 1990 had reached 415 X 10^3 km² (including old clearings), or 9.7% of the 4.3 X 10^6 km² originally forested portion of Brazil's 5 X 10^6 km² Legal Amazon region. Forest loss from 1978 through 1988 proceeded at an average of 22 X 10^3 km²/year, falling to 19 X 10^3 km²/year in 1989 and 13.8 X 10^3 km²/year in 1990. The rate of forest loss in 1991 was 11.1 X 10^3 km²/year, or 20% less than the 1990 rate on which the emissions calculations in this paper are based.

The annual rate of forest and *cerrado* loss in 1990 was releasing approximately 281-282 X 10⁶ metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as "committed carbon," or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now.

Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NOx and non-methane hydrocarbons released raises the impact by 22-37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of CO_2 -equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7-8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

Country	Expert	Institution
Brazil	Philip Fearnside	Departmento de Ecologia Instituto Nacional de Pesquisas de Amazonia Manaus-Amazonia
China	Xu Deying	Research Institute of Forestry Chinese Academy of Forestry Beijing
India	N.H. Ravindranath B.S. Somashekhar Madhav Gadgil	Centre for Ecological Sciences Indian Institute of Science Bangalore
Indonesia	Edy Brotoisworo	Institute of Ecology Padjadjaran University Bandung
Malaysia	Roslan Ismail Ismariah Ahmad Faizah Fakhruddin	Forest Research Institute Kepong Kuala Lumpur
Mexico	Rodolfo Dirzo Minjarez Omar Masera Cerutti María de Jesús Ordóñez	Centro de Ecología Universidad Nacional Autonoma de México Mexico City
Thailand	Somthawin Patanavanich Ladawan Atipanumpai	Thailand Development Research Institute Faculty of Forestry, Kasetsart University Bangkok
USA	Willy R. Makundi Jayant A. Sathaye Jeff Romm	Energy and Environment Division Lawrence Berkeley Laboratory University of California, Berkeley

The following scientists and institutions participated in the research:

The opinions expressed in this work are those of the authors and do not necessarily reflect those of the affiliated institutions or of the respective governments.

An international workshop to discuss the methods, results and policy issues associated with this project was held at the Lawrence Berkeley Laboratory in May 1991. We would like to thank the workshop participants and extend a special acknowledgement to Ken Andrasko of the U.S. EPA for his contribution. A full list of the workshop participants is provided in the appendix. The authors would also like to thank Nina Goldman for editing this work.

1. INTRODUCTION

The present paper hopes to offer a structure for analyzing the greenhouse contribution of deforestation in Brazilian Amazonia. It is hoped that this structure will prove valuable beyond the short time that the series of numbers for greenhouse emissions presented here remains the current best estimate. As the rates and locations of deforestation activity change, and as better data become available on this and other important factors, the estimates can be continually updated. The decline in deforestation rates in recent years is largely explained by Brazil's deepening economic crisis and cannot be extrapolated into the future.

The greenhouse role of deforestation, especially deforestation in Brazil's Amazon region, is a subject of scientific controversy. Despite the wide range of opinions on the rate of deforestation and the amount of greenhouse gases this landscape transformation releases, even the most conservative estimates lead to the conclusion that deforestation makes significant contributions to atmospheric burdens of carbon dioxide (CO₂), methane (CH₄) and other heatblocking gases. There is also a consensus that the meager and highly temporary benefits derived from deforestation are much more than counterbalanced by the losses, at least from the perspective of anyone except the few directly profiting from the clearing activity. Independent of the role of deforestation in the greenhouse effect, the other impacts of forest loss -- including non-greenhouse climatic changes and loss of biodiversity, indigenous cultures and opportunities for sustainable use of the forest -- provide ample justification for Brazil to take immediate steps to remove the motives now driving the clearing process. Greenhouse contributions add one more argument in support of this conclusion. Fortunately for the world, global warming would wreak some of its worst impacts on the temperate zone countries most capable of making the financial outlays needed to contain atmospheric buildup of greenhouse gases. The relatively cheap measures needed to slow tropical deforestation immediately present themselves as the first priority for funds intended to reduce global warming. Much more must also be done, of course, but stopping deforestation heads the list.

Brazil presently accounts for one-fifth of the global total of CO_2 -equivalent carbon released by tropical deforestation. Brazil's vast expanses of still uncleared forest can be expected to increase this country's relative weight even further should the remaining remnants of forest in other parts of the tropics continue to succumb to deforestation. Only about 10% of Brazil's Amazon forest had been cleared by 1990 (Table 1; Fearnside *et al.*, nd-a). If the 13.8 X 10³ km² of forest cleared in 1990 had been the last of the Amazon forest, then, in spite of being a great tragedy for biodiversity, greenhouse emissions would cease to be a major concern. However, with 90% of the forest still standing and at risk of rapid deforestation, the tremendous potential for future emissions is evident.

Political unit	Original forest area		Defores (km ² :			(%	Deforested area (% of original forest area)					
	(km ² x 10 ³)	Jan 1978	Apr 1988	Aug 1989	Aug 1990	Jan 1978	Apr 1988	Aug 1989	Aug 1990			
Deforestation Exc Hydroelectric Dar						,		<u></u>				
Acre	154	2.5	8.9	9.8	10.3	1.6	5.8	6.4	6.7			
Amapá	132	0.2	0.8	1.0	1.3	_0.1	0.6	0.8	1.0			
Amazonas	1561	1.7•	17.3*	19.3 •	19.8	0.1	1.1	1.2	1.3			
Maranhao	155	63.9	90.8	92.3	93.4	4İ.2	58.5	59.5	60.2			
Mato Grosso	585	20.0 *	71.5*	79.6 •	83.6	3.4	12.2	13.6	14.3			
Pará	1218	56.3	129.5	137.3	142.2	4.6	10.6	11.3	11.7			
Rondônia	224	4.2	29.6	31.4	33.1	1.9	13.2	14.0	14.8			
Roraima	188	0.1	2.7	3.6	3.8	0.1	1.5	1.9	2.0			
Tocantins/Goiás	58	3.2	21.6	22.3	22.9	5.4	37.0	38.3	39.3			
Legal Amazon	4275	152.1	372.8	396.6	410.4	3.6	8.7	9.3	9.6			
Forest Flooded by Hydroelectric Dams:		0.1	3.9	4.8	4.8	0.0	0.1	0.1	0.1			
Deforestation from All Sources:		152.2	376.7	401.4	415.2	3.6	8.8	9.4	9.7			

Table 1. Extent of deforestation in the Brazilian Legal Amazon

Source: Fearnside et al., nd-a.

Notes: (a) Maranhao values include 57.8 x 10³ km², and Pará values include 39.8 x 10³ km², of "old" (approximately pre-1960) deforestation now largely under secondary forest.

The vast size of Brazil's Amazon region is not matched by a proportionate amount of scientific knowledge of its forest. Political factors have led tropical research to be concentrated in the tiny vestiges of forest in such locations as Costa Rica, Puerto Rico and Panama. Costa Rica, for example, is 100 times smaller than Brazil's 5×10^6 km² Legal Amazon region (Fig. 1), yet has been the subject of many more research studies. Conclusions on global climate change require that special attention be devoted to Brazil. Likewise, discussions of tropical deforestation must not relegate Brazil to a list of caveats or exceptions to global generalizations. Deforestation in Brazil differs significantly from most other parts of the tropics because of the key role that Amazonian clearing plays in land speculation and in establishing land tenure, and because of the prominent place of cattle pasture in these social processes. In comparison with other tropical countries, these differences mean that Brazil has both less reason for allowing current rates of deforestation to continue and a greater chance of achieving significant reductions through government policy changes.

2. EXTENT AND RATE OF DEFORESTATION

The present paper uses estimates of the extent and rate of deforestation rate estimates by state derived from LANDSAT imagery (Tables 1 and 2). The average annual rates in the forested part of the Legal Amazon were 22 X 10^3 km² for the 1978-1988 period, 19 X 10^3 km² for 1988-1989 and 13.8 X 10^3 km² for 1989-1990 (Fearnside *et al.*, nd-a). The rate for 1990-1991 was 11.1 X 10^3 km². These rates cover only loss of primary forest within the portion of the region that was originally forested; rates of conversion of the *cerrado* are far less certain, but fortunately have less impact on greenhouse calculations due to the much lower biomass of savanna vegetation. *Cerrado* clearing rate for 1990 is assumed (guessed) to be 10 X 10^3 km²/year, down from the value of 18 X 10^3 km²/year estimated for 1988 (Fearnside, 1990a).

It should be noted that the deforestation rate estimates used here are much lower than those that have been used in several recent calculations of the global carbon budget. The World Resources Institute (WRI) Report for 1990-91 (WRI, 1990: 103) used 80 X 10³ km²/yr as the annual rate for the 1980s. Norman Myers (1989, 1990, 1991) placed the rate as of 1988 at 50 X 10³ km²/yr, and the Intergovernmental Panel on Climate Change (IPCC) later used this value as the basis for greenhouse emission calculations (IPCC, 1990: 101). Both estimates are based on calculations of the area burning derived from the number of fires estimated with the thermal infra-red band 3 (3.5-3.9 um) of the Advanced Very High Resolution Radiometer (AVHRR)-the sensor carried by the U.S. National Oceanographic and Atmospheric Administration (NOAA-9) meteorological satellite. The 80 X 10³ km²/yr rate used by WRI was that calculated for the year 1987, which had much more deforestation and burning than other years due to a combination of dry weather and a constitutional debate on confiscating forest areas from large ranchers for redistribution in a proposed agrarian reform program. The 1987 estimate (Setzer et al., 1988, 1991), as well as the 48 X 10³ km²/yr value for 1988 estimated by Setzer and Pereira (1990) -- interviews concerning which provided the basis for the 50 X 10³ km²/yr estimate put forward by Myers and used by the IPCC -- suffer from severe (and possibly insoluble) methodological problems for estimating areas burned and for converting burning information into estimates of deforestation (reviewed in Fearnside, 1990a). The correction factors used to adjust for partially burning picture elements or pixels (0.7) and for the proportion

·

Political unit	De	eforestation rate	e (km ² x 10 ³ /yr)	Change in def rate for 1988-1 to 1978-	989 relative	Change in deforestation rate for 1989-1990 relative to 1988-1989		
	1978-1988 *	1978-1989 ⁶	1988-1989°	1989-1990	(km ² x 10 ³ /yr)	(% change)	(km ² x 10 ³ /yr)	(% change)	
Deforestation Exclusive of Hydroelectric Dams:									
Acre	0.6	0.6	0.6	0.6	-0.1	-14	0.0	1	
Amapá	0.1	0.1	0.2	0.3	0.1	190	0.1	48	
Amazonas	1.6	1.5	1.3	0.5	-0.3	-17	-0.8	-59	
Maranhao	2.7	2.4	1.4	1.1	-1.3	. -47	-0.3	-22	
Mato Grosso	5.1	5.1	6.0	4.0	0.8	16	-1.9	-33	
Pará	7.3	7.0	5.8	4.9	-1.5	-21	-0.9	-15	
Rondônia	2.3	2.3	1.4	1.7	-0.9	-37	0.2	16	
Roraima	0.2	0.3	0.7	0.2	0.4	184	-0.5	-76	
Tocantins/Goiás	1.7	1.7	0.7	0.6	-0.9	-56	-0.2	-21	
Legal Amazon	21.6	21.1	18.1	13.8	-3.6	-17	-4.2	-23	
Forest Flooded by Hydroelectric Dams:	0.4	0.4	1.0	0.0	0.6	156	-1.0	-100	
Deforestation from All Sources:	22.0	21.5	19.0	13.8	-3.0	-14	-5.2	-27	

Table 2. Rate of deforestation in the Brazilian Legal Amazon

Source: Fearnside et al., nd-a

Notes: (a) Uses intervals of 10 years for all political units except Rondônia, Roraima and Tocanins/Goiás, for which the interval is 11 years. Intervals are rounded to the nearest year based on the state average image data for 1988 and the Legal Amazon average image date for 1978.

(b) Time interval of 11.6 years used for all political units.

(c) Time interval calculated by individual LANDSAT scene.

4

of the burning attributed to new forest clearing (0.4) could both be high by as much as a factor of two. A correction factor for partially burning pixels is difficult to derive because of large increases in the proportion of overestimation caused by small increases in fire temperature (a highly variable parameter) -- theoretical calculations show that a fire of only 900 m² is sufficient to trigger an entire AVHRR pixel of 1.2 X 10⁶ m² (Robinson, 1991), although practical experience suggests that narrow flame fronts up to two km in length can escape detection (A.W. Setzer, personal communication, 1990). The correction factor for nonforest is high because *cerrado* was included in the numerator but not in the denominator when deriving the factor (Fearnside, 1990b). These methodological problems invalidate principal basis for the carbon calculations mentioned earlier. As of now there is no reliable way to measure directly the areas burning using an image from a single year (as was attempted in the thermal AVHRR studies): to estimate deforestation one still must have images from two years in the same place, and calculate by difference the increase in cleared area.

3. BIOMASS OF AMAZONIAN FORESTS

The initial biomass of the vegetation is an important factor affecting the magnitude of greenhouse emissions from deforestation. Estimates of this have been evolving over time. The controversy over biomass is summarized in Table 3. The biomass estimate used in the present paper (372 MT/ha total biomass for forests cleared in 1990) is based on much more data than the earlier estimates. It also indicates a substantial increase in the biomass per hectare estimated for the locations currently the focus of deforestation activity in Amazonia. It is higher by a factor of two than the 155.1 MT/ha value for total biomass derived by Brown and Lugo (1984) from FAO forest volume surveys for "tropical American undisturbed productive broadleafed forests" that has been used in recent global carbon balance calculations (e.g., Detwiler and Hall, 1988). It is also much higher than the 169.6 MT/ha above-ground estimate by Brown *et al.* (1989) used as total biomass by Houghton (1991) for carbon emission estimates. The estimate is also higher than the 211 MT/ha total biomass estimated for areas cleared in 1988 for emissions calculations (Fearnside, 1991); a major reason for the increase is better data for biomass in the southern portion of the region where deforestation activity is concentrated.

The rate of deforestation, together with the biomass of forest being cleared, affects the current (as opposed to potential) contribution of deforestation to the greenhouse effect. The rate of clearing has been calculated for each state (Table 2), and is apportioned between various forest types within each state by assuming that, within each state, each forest type is cleared in proportion to the area in which it occurs outside of protected areas.

Total Biomass Reported (MT/ha)	Total biomass equivalent (including components omitted in published value) (MT/ha)	Source
155.1	171	Brown and Lugo, 1984
362	362	Fearnside, 1985a
254	254	Fearnside, 1986b, 1987a
169.6	251	Brown et al., 1989
247°/211°	247°/211°	Fearnside, 1991 nd-a
227°/2894	·.	Brown and Lugo, 1992
272 / 320	272°/320°	Fearnside, 1992
372'/394*	372 ^r /394*	This estimate

Table 3. Amazon forest biomass controversy

Notes: (a) All forests in Brazilian Legal Amazon.

(b) Forests being cleared in 1988 in Brazilian Legal Amazon.

(c) From RADAMBRASIL data.

(d) From FAO data.

(e) Dense forests only.

(f) Forests being cleared in 1990 in the Brazilian Legal Amazon.

The different types of vegetation present in the Legal Amazon are summarized in Table 4 and the area of each is given by state in Table 5. These areas have been measured (Fearnside and Ferraz, nd) from a digitized version of the 1:5,000,000 scale vegetation map of Brazil published by the Brazilian Institute for Forestry Development (IBDF -- since incorporated into the Brazilian Institute for the Environment and Renewable Natural Resources - IBAMA) and the Brazilian Institute for Geography and Statistics (IBGE) (Brazil, IBDF and IBGE, 1988). The IBDF/IBGE (IBAMA) map code used indicates 29 vegetation types within the Brazilian Legal Amazon, of which 19 are considered here to be forest. This is a liberal definition of forest, including all ecotones between a forest and a non-forest vegetation type such as *cerrado*. So defined, the area of forest present according to the map totals 3.7×10^6 km². The areas that were originally forest and non-forest using this definition are mapped in Figure 2.⁽¹⁾

Because the Legal Amazon is so big, each of its nine states being the size of countries in many parts of the world, vegetation with the same map code in different states cannot be assumed to have the same biomass. Considering each vegetation type in each state as a separate unit, here designated "ecosystems," there are a total of 112 different ecosystems in the Legal Amazon, of which 78 are "forest."

In order to estimate the area of each forest type being cleared annually in 1990, it was assumed that forests within each state are cleared in proportion to the area of each type outside of parks and other legally protected areas. Although protected areas are not immune to deforestation, the small amount of clearing activity currently taking place inside these areas is undoubtedly insignificant from the standpoint of greenhouse emissions. Table 6 presents the areas of each vegetation type inside of protected areas, which have been subtracted from the areas of the vegetation types present for the purpose of apportioning the deforestation activity. The resulting estimate of the approximate 1990 clearing rate in each ecosystem type is presented in Table 7.

Biomass loading (biomass per hectare) of the different forest types is estimated from forest volume inventories in two major surveys, one carried out by the RADAMBRASIL project in the 1970s and one by the Food and Agriculture Organization of the United Nations (FAO) in the 1950s. A total of 2892 ha of usable data have been extracted from these studies for vegetation types classified as forest. Almost 90% of this is surveys by RADAMBRASIL with measurements of trees to a minimum diameter at breast height (DBH) of 31.8 cm; the remainder is from FAO surveys with measurements to a minimum diameter of 25 cm DBH. Almost all of the data are from one-hectare sample plots. The original data are scattered through the over 50 volumes and annexes that comprise these studies. The RADAMBRASIL study is a veritable labyrinth, with its vegetation key changing from one volume to the next. The RADAMBRASIL vegetation maps were drawn at a scale of 1:250,000 and published at a scale of 1:1,000,000; the vegetation classification for these maps is more detailed than that for the 1:5,000,000 IBDF/IBGE (IBAMA) map used here (Table 4). The RADAMBRASIL and FAO vegetation classifications were translated to the IBAMA code, and data with unresolved inconsistencies were discarded (Fearnside and Bliss, nd).

Table 4. Vegetation types in the Brazilian Legal Amazon

Calegory	Code	Group	Subgroup	Class
DENSE	Da-0	Ombrophyllous forest	dense forest	alluvial Amazonian
FOREST	Db-0	Ombrophyllous forest	dense forest	lowland Amazonian
	Dm-0	Ombrophyllous forest	dense forest	montane Amazonian
	Da- 0	Ombrophyllous forest	dense forest	submontane Amazonian
NON-	Aa-0	Ómbrophyllous forest	open	altuvial
DENSE FOREST	Ab-0	Ombrophyllous forest	open	lowland
	As- 0	Ombrophyllous forest	open	* submontane
	Cs-0	Seasonal forest	deciduous	submontane
	Fa-0	Seasonal forest	semideciduous	alluvial
	Fs-0	Seasonal forest	semideciduous	submontane
	La-0	Woody oligotrophic vegetation of swampy and sandy areas		open arboreal
	Ld-0	Woody oligotrophic vegetation of swampy and sandy areas		dense arboreal
	Lg-0	Woody oligotrophic vegetation of swampy and sandy areas		grassy-woody
	LO-0	Areas of ecological tension and contact		Woody oligotrophic vegetation of swampy and sandy areas — ombrophyllous forest
	ON-0	Areas of ecological tension and contact		Ombrophyllous forest-seasonal forest
	Pf-0	Areas of pioneer formations		fluvio-marine influence
	SM-0	Areas of ecological tension and contact		savannadense ombrophyllous forest
	SN- 0	Areas of ecological tension and contact		savannaseasonal forest
	<u>\$0-0</u>	Areas of ecological tension and contact		savannaombrophyllous forest
NON-	Ep-0	Steppe	caatinga	perkland
FOREST	Pa-0	Areas of pioneer formations		fluvial influence
	rm-0	Ecological refugium	high altitude	montane
	Sa-O	savanna	cerrado	open arboreal
	Sd-0	SAVADDA	cerrado	dense arboreal
	Sg-0	savanna	cerrado	gramy-woody
	Sp-0	savanna	cerrado	parkland
	ST- 0	Areas of ecological tension and contact		savanna-steppe-like savanna
	Td-3	Steppe-like savanna	Roraima grasslands	dense arboreal
	Tp-3	Steppe-like savanna	Roraima grasslands	parkland

9

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grasso	Pará	Rondônia	Roraima	Tocantins/ Goiás	Total present
DENSE	Da-0		9,011	164,867	105	1,116	76,570	2,704	3,326	2,610	260,309
FOREST	Db-0	16,408	2,184	615,203	22,586		164,091	2,066	10,248		832,786
	Dm-0		113	10,181			3,418		20,661		34,373
	Ds-0	518	99,220	178,103	1,988	23,154	413,345	14,607	83,692	3,055	817,682
	subtotal	16,926	110,528	968,354	24,679	24,270	657,424	19,377	117,927	5,665	1,945,150
NON-	Aa-0	10,591		65,748			805	2,273			79,417
DENSE	Ab-0	114,380		211,052				41,064			366,496
FOREST	As-0			37,555		124,620	286,271	77,794	8,430	1,216	535,886
	C∎-0				3,666	736	5,386	12		115	9,903
	Fa-0					3,554					3,554
	Fs-0					24,317		7,718	1,041	1,328	34,404
	La-0								970		970
	Ld-0								10 ,967		10,967
	Lg-0								9,767		9,767
	LO-0			172,607					30,184		202,791
	ON-0		30			168,069	2,991	4,801	3,045		178,936
	Pf-0		1,823		2,089		3,894	•			7,806
	SM-0				384						384
	SN-0			1,082	6,570	142,778	27,812	4,781	904	14,465	198,392
	<u>\$0-0</u>		4,226	27,350		22,124	59,734	21,932 ,	4,286	6,551	146,203
	Subtotal	124,971	6,079	515,394	12,709	486,198	386,893	160,363	69,594	23,675	1,785,876
	Subtotal all forests	141,897	116,607	1,483,748	37,388	510 ,468	1,044,317	179,740	187,521	29,340	3,731,026

.

Table 5. Area of natural vegetation present in the Brazilian Legal Amazon (km²)

(continued on following page)

Ķ

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grasso	Pará	Rondônia	Roraima	Tocantins/ Goiás	Total present
NON-	Ер-0							904			904
FOREST	Pa-0		15,157	12,778	2,517	14,738	27,162	^{(**} 8,690	4		81,042
	.m -0								390		390
	Sa-O			1,531	55,758	167,534	5,686	11,028		102,445	343,982
	Sd- 0				15,771	10,840	1,274			2,234	30,119
	Sg-0				22	10,490	5,057		15,481	7,113	38,163
	Sp-0		10,038	5,556	26,980	64,085	12,393	2,664	8, 9 69	48,962	179,647
	ST-0					6,599					6,599
	Td-3							17	1,550		1,550
	<u>Tp-3</u>								10,671		10,671
	Subtotal	0	25,195	19,865	101,048	274,286	51,572	23,286	37,061	160,754	693,067
	Total	141,897	141,802	1,503,613	138,436	784,754	1,095,889	203,026	224,582	190,094	4,424,093

Notes: Areas in km² measured from 1:5,000,000 vegetation map (Brazil, IBAMA/IBOE, 1989). These areas do not reflect losses due to recent deforestation.

-

11

Vegetation type ^a	Code					Area p	rotected (km	²)			
		Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Romina	Tocantins/ Goiás	Total protected
DENSE	Da-0		305	5,316			7	297		58	5,983
FOREST	Db-0			21,994	2,872		5,914				30,78 0
	Dm-0			3,902					565		4,467
	Ds-0		59	3,614			7,999	558	5,384		17,614
	subtotal	0	364	34,826	2,872	0	13,920	855	5,949	58	58,844
NON-	Aa-0			99							9 9
DENSE FOREST	Ab-0	99 2		2,779				88			3,859
	As- 0			648			75	4,915			5,638
	C a-0					مم م					0
	Fa-0										0
	Fs-0						•			430	430
	La-0			601							601
	Ld-0			485					476		961
	Lg-0										0
	LO-0			15,029					1,581		16,610
	ON-0							•	``		0
	Pf-0		1,547								1,547
	SM- 0		•						1 - A		0
	SN-0				x	2,592		а. •	,		2,592
	SO- 0		796					2,993	<i>j</i>		3,789
	Subtotal	992	2,343	19,641	0	2,592	75	7 <u>,996</u>	2,057	430	36,126
	Subtotal all fo rests	992	2,707	54,467	2,872	2,592	13,995	8,851	8,006	488	94,97 0

.

Table 6. Area of protected vegetation in the Brazilian Legal Amazon

(continued on following page)

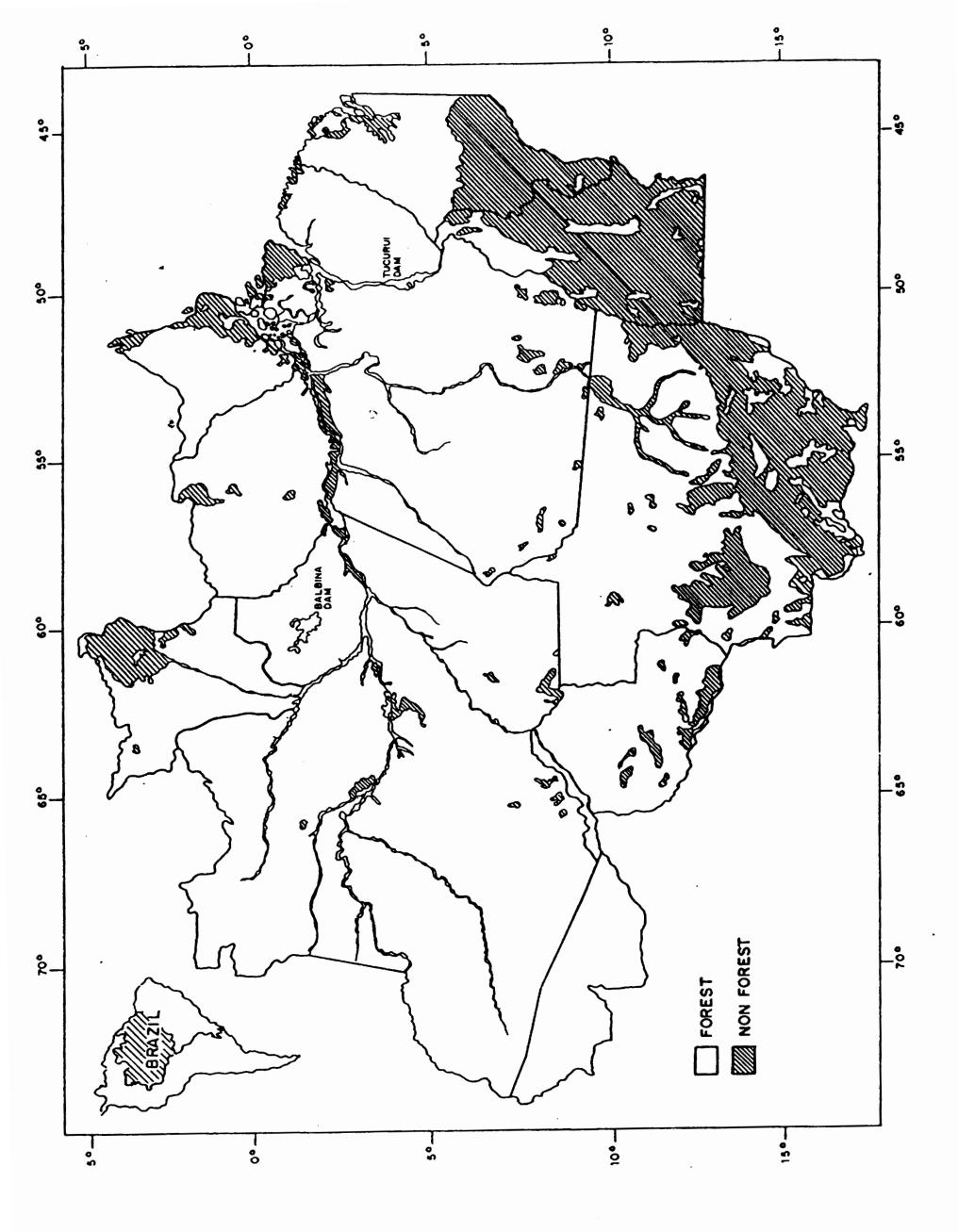
.

Vegetation type ^a	Code .	Area protected (km ²)									
		Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantins/ Goiás	Total protected
NON-	Ep-0										0
FOREST	Pa- 0		5,739	54				1,569			7,362
	rm- 0										0
	Sa-0					1,336	•	3,513			4,849
	Sd-0										0
	Sg-0					854					854
	Sp-0		158			`		,	;	4,064	4,222
	ST -0										0
	Td-3										0
	Tp-3										0
	Subtotal	0	5,897	54	0	2,190	0	5,082	0	4,064	17,287
	Total	992	8,604	54,521	2,872	4,782	13 ,995	13,933	8,006	4,552	112,257

Table 6 (continued). Area of protected vegetation in the Brazilian Legal Amazon.

Notes: Vegetation presently unaltered according to 1:5,000,000 vegetation map (Brazil, IBDF/IBGE, 1988).

.


~

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantins/ Goiás	Total
DENSE	Da-0		2.00	5.95	0.34	0.88	36.43	2.36	0.30	5.20	53.46
FOREST	Db-0	6.50	0.50	22.10	63.51	•	75.26	2.03	0.92		170.82
	Dm-0		0.03	0.23			1.63		1.80		3.69
	Ds-0	0.21	22.81	6.50	6.40	18.35	192.85	13.78	7.02	6.23	274.16
	subtotal	6.70	25.34	34.79	70.26	19.24	306.16	18.17	10.04	11.43	502.12
NON-	Aa-0	4.19		2.45			0.38	2.23			9.2
DENSE FOREST	АЬ-0	44.90		7.76				40.19			92.8
	As-0			1.38		98.79	136.16	71.48	0.76	2.48	311.04
	Cs-0				11.81	0.58	2.56			0.23	15.19
	Fa-0					2.82					2.8
	Fs-0					19.28		7.57 .,	0.09	1.83	28.7
	La-0								0.09		0.0
	Ld-0								0.94		0. 9 -
	Lg-0								0.88		0.8
	LO-0			5.87					2.57		8.4
	ON-0		0.01			133.23	1.42	4.71	0.27		139.64
	Pf- 0		0.06		6.73		1.85				8.6
	SM- 0				1.24						1.24
	SN-0			0.04	21.17	111.13	13.23	4.69	0.08	29.48	179.82
	<u>\$0-0</u>		0.79	1.02		17.54	28.42	18.57	0.38	13.35	80.08
	Subtotal	49.10	0.86	18.51	40.94	383.36	184.04	149.43	6.06	47.37	879.68
	Subtotal All	55. 8 0	26.20	53.30	111.20	402.60	490.20	167.60	15.10	58.80	1381.80
	Forests										

Table 7. Approximate 1990 clearing rate in each ecosystem type in the Brazilian Legal Amazon (10th ha/year)

Notes: Areas in km² measured from 1:5,000,000 vegetation map (Brazil, IBAMA/IBOE, 1989). These areas do not reflect losses due to recent deforestation.

₹^{°°}

All biomass values given here and elsewhere in this paper refer to oven dry weight biomass. Unless otherwise noted, the values are for total biomass, including both above and below ground portions, and including dead vegetation (but not soil carbon). All biomass fractions are included (leaves, small trees, vines, understory, etc.). Values are expressed in terms of biomass, rather than carbon (carbon content of biomass is 50%).

The parameters used for deriving the biomass estimates are given in Table 8. It should be noted that these parameters lead to estimated biomass values substantially higher than those derived by Brown and Lugo (1992) from the FAO dataset and from a summary of a portion of the RADAMBRASIL dataset covering the northern part of the region. The difference is largely because of biomass components omitted from the Brown and Lugo estimates, including palms, vines, trees smaller than the 10 cm DBH, dead biomass and befow-ground biomass (see Fearnside, 1992). All of these components must be added to the estimates for use in estimating carbon stocks for greenhouse calculations.

Direct measurements of above-ground forest biomass partitioning are necessary to derive factors for estimating components such as vines, understory, litter and dead wood. Available data are presented in Table 9. Below-ground biomass is derived from the available studies presented in Table 10.

The total biomass is derived for each of the approximately 2900 samples, and the average for each ecosystem type is calculated. Sample sizes in hectares are given in Table 11. Of the 78 forested ecosystem types, 45 (58%) have forest volume data available in the RADAMBRASIL or FAO datasets, and 33 (62%) do not. Fortunately, most of the ecosystem types without data are relatively minor in importance from the standpoint of current greenhouse emissions. Of estimated biomass cleared in 1990, they total only 21%. Of this, 60% is represented by only three ecosystem types: As-0 in Mato Grosso, As-0 in Rondônia and SN-0 in Tocantins.⁽²⁾ For the ecosystems with no forest volume measurements, the mean biomass for the areas sampled in the same vegetation type (in the other states) is used as a substitute. For five of the 19 forest types, no measurement exists for any state. Seven of the 33 ecosystems without data fall into this category. All of these are in the "non-dense" forest category, and, fortunately, none represents a major ecosystem from an emissions standpoint. The mean for sampled areas in non-dense forests was used as a substitute for these seven values. Vegetation types with no sample in any state represent only 0.9% of the estimated biomass cleared in 1990; of this small amount, 73.4% is in one vegetation type (Pf-0). The mean biomass per hectare in each of the 78 forest types, including the values substituted as described above, are presented in Table 12. It is evident that significant variation exists between states and between forest types.

Derivation	Factor	Multiplier	Source	basis
Calculation of stemwood volume for trees of DBH > 10 cm:	Volume expansion factor (30-10 cm DBH) (RADAMBRASIL)	1. 25	Brown and Lugo 1992	C
	Volume expansion factor (25-10 cm DBH) (FAO)	o 1.22	Brown and Lugo 1992	
Conversion of stemwood volume to biomass:	Wood density (basic specific gravity)	0. 69	Brown <i>et al.</i> 1989; Brown and Lugo 1992	d
	Biomass expansion factor	8	Brown and Lugo 1992	c
Adjustments to above-ground live biomass ^b :	Hollow trees	0.9077	Fearnside 1992	f
	Vines	. 1.0425	Fearnside 1992	g
	Other non-tree components	1.0021	Fearnside 1992	h
	Palms	1.0350	Fearnside 1992	i
	Trees < 10 cm DBH	1.1200	Fearnside 1992	j
	Trees 30-31.8 cm DBH	1.0360	Fearnside 1992	k
	Bark (volume & density)	0.9856	Fearnside 1992	1
	Sapwood (volume & density)	0.9938	Fearnside 1992	m
	Form factor	1.1560	Fearnaide 1992	n
Adjustments for other components:	Dead above-ground biomass:	1.0903	Fearnside 1992	0
	Below-ground:	1.196	Table 10	Р

Table 8. Parameters for deriving biomass estimates from RADAMBRASIL and FAO forest volume data

(continued on following page)

Υ,

17

Notes: (a) Biomass expansion factor (BEF) from Brown and Lugo, 1992: BEF=Exp (3.213-(0.506 ln (SB))) for SB<190 MT/ha; 1.74 for SB>190 MT/ha, where SB=stand biomass in MT/ha for trees > 10 cm DBH. SB=wood density x wood volume. Wood volume = volume reported by RADAMBRASIL or FAO, multiplied by the appropriate volume expansion factor.

(b) The adjustments to above-ground live biomass are with respect to the biomass values as defined by Brown and Lugo, 1992 (live stemwood > 10 cm DBH), while the adjustments for other components are with respect to above-ground live biomass after the above corrections.

(c) For dense forest: 80% of volume of trees > 10 cm DBH is in trees > 30 cm DBH. Non-dense forest = 1.50 (67% of volume > 30 cm DBH).

5

- (d) 21 1-ha plots in Pará by Heinsdijk, 1958a,b; one 0.08-ha plot near Manaus by Prance et al., 1976.
- (e) All cases (pan tropical) reviewed in Brown et al., 1989.
- (f) Calculated from N. Higuchi, personal communication, 1991.
- (g) Fearnside et al., nd-c, nd-d; Revilla Cardenas, 1986:39, 1987:51, 1988:76-77.
- (h) Klinge et al., 1975:116
- (i) Klinge et al., 1975:116; Fearnside et al., nd-a.
- (j) Jordan and Uhl, 1978:392
- (k) Brazil, Projeto RADAMBRASIL, 1973, 5:IV/12
- (1) density: D.A. da Silva, personal communication, 1991; weight: Revilla Cardenas, 1986:38, 1987:51, 1988:76-77.
- (m) 13 species at Jari (Reid Collins & Associates Ltd., 1977); 15 species at Manaus (INPA, CPPF, unpublished data)
- (n) Form factors by size class in 309 trees at Manaus: N. Higuchi et al., unpublished data; size classes: Coic et al., 1991.
- (o) Klinge et al., 1975; Revilla Cardenas, 1986:39, 1987:51, 1988:76-77; Martinelli et al., 1988:35
- (p) Klinge et al., 1975 (Manaus); Russell, 1983 (Jari); D. Nepstad, unpublished data (Paragominas)

Location (State)	Forest type			Dry v	weight of com	nponent (MT/h	a)			Per	cent of abov	re-ground liv	ve dry weight	(%)	Tol. A-g* dry wt.	Vine % of tot. a-g	Direct survey area	Sour (pag
		A-g live biomaas	Bark	Vince	Roots	Under- story*	Dead wood	Litter	Total dead +++	Bark o	Vines	Root mat	Under- story	Total dead	(MT/ ba)	(%)	(m ¹)	
DENSE FORESTS:																		
Kararao Dam+ (Parii)	Dense riparian	186.1	11.76	2.81	3.34	5.55	11.17	8.29	19.46	6.32	1.51	1.79	2.98	10.46	205.56	1.37	625	a (51)
Samuel Dam (Rondônia)	Dense upland	387.86	44.24	4.59	1.96	12.96	1.68	13.56	15.24	11.41	1.18	0.51	3.34	3.93	403.1	1.14	625	b(39)
Babaquara Dam (Parii)	Dense riparian	297.38	19.55	9.74	4.01	9.58	12.32	10.5	22.82	6.57	3.28	1.35	3.22	7.67	320.2	3.04	2500	c(76)
Babaquara Dam (Parii)	Dense upland	198.27	9.08	9.02	1.34	9.15	8.87	12.31	21.18	4.58	4.55	0.68	4.61	10. 68	219.45	4.11	1875	c(77)
Reserva Egler (Amazonas)		357									6.2			9.24	390		2000	đ
Fazenda Dimona (Amazonas)											2.82						600	e
Altamira (Pani)				32.61			·				10.19				272.46	11. 97	900	f
Samuel Dam (Rondônia)		303					27	10	37.00					12.21	340			g(35)
MEAN										7.22	4.25	1.08	3.54	9.03	1148.31	9.66		
NON-DENSE FORESTS:						-												
Karanao Dam+ (Parii)	Open upland	126.05	6. 45	2.87	3.55	5.99	7.46	9.53	16. 99	5.12	2.28	2.82	4.75	13.48	143.04	2.01	625	b(\$4)
Samuel Dam (Rondônia)	mata de baixio**	362.45	16.48	10.77	10.6	2.59	5.52	5.35	10.87	4.55	2.97	2.92	0.71	3.00	373.32	2.88		a (39)

Table 9. Direct measurements of forest biomass and components

Sources: (a) Revilla Cardenas, 1987

Notes: * woods and leaves

Location	Above-ground live (MT/ha)	Above-ground total (MT/ha)	Below-groun d biomass (MT/ha)	Total biomass (MT/ha)	Root/shoot ratio	Percent below- ground (live + dead)	Source
Manaus,		······································					
Amazonas	357.0	390.0	122.5	512.5	; 0.31	23.90	(a)
Jari, Pará	368.91	393.24	56.96	450.2	0.14	12.65	(b)
Paragominas,							
Pará	365.0	428.0	32.0	440.0	0 <u>.</u> 07	7.27	(c)
Mean	363.64	403.75	70.49	467.57	0.17	15.08	

Table 10. Below-ground biomass in Amazonian forests

Sources:

(a) Klinge et al., 1975; Klinge and Rodrigues, 1973.

2

έ.

(b) Russell, 1983:29; root mat (12.49 MT/ha) considered as below-ground. Litter (5.66 MT/ha) and "vines & surface roots" (3.46 MT/ha) considered as above-ground.

(c) Uhl et al., 1988 for above-ground components except above-ground roots (30 MT/ha) (D. Nepstad, pers. comm., 1991 cited by Brown et al., nd); Below-ground from Nepstad, 1989 cited by Brown et al., nd.

..

The biomass stock in each ecosystem type can be calculated by multiplying the perhectare biomass (Table 12) by the area in hectares (values from Table 5 multiplied by 100 ha/km^2). Table 13 gives the approximate biomass stock cleared in 10⁶ metric tons (MT) for each ecosystem in the Legal Amazon. For the region's forests as a whole, the mean biomass loading (MT/ha) for biomass present (weighted by the area of each ecosystem present) is estimated at 394 MT/ha. In Table 12 the loading for biomass cleared in 1990 (weighted by the deforestation rate in each state) is calculated at 372 MT/ha. The forest areas cleared in 1990 are concentrated in lower biomass vegetation types along the southern fringe of the region (Table 13). The biomass in the region as a whole is about 6% higher than the average in the areas cleared in 1990, a difference equivalent to over 800 km² of forest clearing.

The above biomass calculations apply only to forest. Clearing in the non-forest areas is assumed to be in *cerrado* or equivalent biomass vegetation. *Cerrado* biomass is not derived from the 120 ha of RADAMBRASIL forest volume information available (Table 11), but rather from firewood volume surveys (Table 14). The mean of the three available estimates corresponds to a total biomass of 45 MT/ha.

4. TRANSFORMATIONS OF GROSS CARBON STOCKS

4.1. Land Uses Replacing the Forest

Estimates of the impact of deforestation have usually assumed that all deforested land is converted to cattle pasture (the dominant land use in deforested areas in Brazilian Amazonia). Some have even assumed that the forest is replaced with bare ground. Pasture has been assumed to remain indefinitely as the replacement for forest in estimates of net greenhouse emissions (e.g., Fearnside, 1985a, 1987a, nd-a), and in simulations of impact on the water cycle (e.g., Shukla *et al.*, 1990) and of the less threatening changes in surface albedo (Dickinson and Henderson-Sellers, 1988). The results of such calculations are useful in identifying potential consequences of continued deforestation, but are unrealistic as quantitative predictions of contributions to climatic changes. The principal reason for using cattle pasture as the replacement vegetation has been the lack of more realistic scenarios of the evolution of the landscape after its initial conversion from forest to pasture. Here a first approximation is made using a simple first order Markov model of transition probabilities between land use classes (Fearnside, nd-b).

The fate of land that is cleared can be approximated using information on the behavior of farmers and ranchers in Amazonia today. The consequences of continuation of the same patterns can be calculated using a Markov matrix of transfer probabilities between states. The annual probabilities of transfer between farmland, productive pasture, degraded pasture and secondary forest are summarized in Figure 3 for land that is deforested (based on Fearnside, 1989a).

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantins/Goiás	Tota
DENSE FOREST	Da-0		1	249	0	4	17	5	6	0	282
	Db-0	11	6	363	18		1,028	0	10		1,436
	Dm-0		0	2			0		25		27
	Ds-0	12	30	174	0	51	164	0	47	4	482
	subtotal		37	788	18	55	1,209	5	88	4	2,204
ION-DENSE	Aa-0	12		26			0	0			38
OREST	Ab-0	27		53				12			92
	As-0			8		0	86	0	0	0	94
	C∎-0				0	1	0			0	1
	Fa-0					7		· ;			7
	Fs-0					22		9	0	0	31
	La-0								0		0
	Ld-0								0		0
	Lg-0						•		0		0
	LO-0			219					2		221
	ON-0		0			101	0	11	20		132
	Pf-0		0		0		0				0
	SM-0				0			•	• .		0
	SN-0			2	0	66	2	Ŏ	2	0	72
	<u>so-0</u>		0	2		13	24	0	<u>i0</u>	0	39
	Subtotal		0	310	0	210	112	32	-24	0	688
	Subtotal all forests		37	1,098	18	265	1,321	37	112	4	2,892

.

the second s

Table 11. Su	rveyed area of	ecosystem types i	in the Brazilian	Legal Amazon <	<ha complete="" data="" with=""></ha>

(continued on following page)

5

22

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantins/Goiás	Total
NON-FOREST	Ep-0							0			0
	Pa-0		0	1	0	0	0	0			1
	rm-0								0		0
	Sa-O			0	0	109	0	0		0	109
	Sd-0				0	9	0			0	9
	Sg-0				0	0.	0		0	0	0
	Sp-0		1	0	0	0	0	0	0	0	1
	ST-0					0					0
	Td-3								0		0
	<u>Tp-3</u>							9 	00		0
	Subtotal		11	1	0	118	0	0	0	0	120
	Total		38	1,099	18	383	1,321	37	112	4	3,012

र्े

23

Notes: (a) Areas in km² measured from 1:5,000,000 vegetation map (Brazil, IBAMA, 1989). These areas do not reflect losses due to recent deforestation.

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantins/Goiás	Area-weighted mean
DENSE	Da-0		411	446	434	267	360	275	366	434	374
FOREST	Db-0	388	507	400	400		485	461	364		438
	Dm-0		381	298			381		387		379
	Ds-0	328	512	399	360	352	432	360	365	90	418
	Dense forests	386	504	407	396	348	436	360	369	247	420
NON-	Aa-0	390		399			492	395		***************	398
DENSE FOREST	АЬ-0	401		404				351			380
	As-0			444		330	319	330	330	330	326
	Cs-0				337	337	337			337	337
	Fa-0					325					325
	Fs-0					354		414	371	371	371
	La-0								380		380
	Ld-0								380		380
	Lg-0								380		380
	LO-0			433					379 ·		417
	ON-0		352			339	352	482	346		344
	Pf-0		380		380		380		•	٠.	380
	SM-0				380						380
	SN-0			366	344	343	428	344	277	i, 344	350
	<u>\$O-0</u>		341	499		306	346	341	341	<u> </u>	337
	non-dense forests	400	344	421	349	337	333	348	368	344	344
	all forests	398	499	412	379	338	397	349	368	325	372

,

Table 12. Biomass per hectare: Means by ecosystem type, vegetation type and state (MT/ha)

Ķ,

Category	Code	Acre	Amapá	Amazonas	Maranhao	Mato Grosso	Pará	Rondônia	Roraima	Tocantina/Goiás	Total
DENSE	Da-0		823	2,654	4	236	13,100	649	109	2,256	19,974
FOREST	Db-0	2,519	255	8,838	25,376		36,503	934	334		74,758
	Dm-0		10	70			619		698		1,397
	Ds-0	67	11,682	2,592	2,307	6,458	83,340	4,962	2,563	561	114,532
	subtotal	2,586	12,769	14,153	27,829	6,694	133,562	6,545	3,705	2,817	210,661
NON-	Aa-0	1,635		976			188	881**		۵	3,681
DENSE FOREST	Ab-0	18,008		3,134				14,110			35,252
	As-0			610		32,603	43,500	23,589	250	818	101 ,36 9
	Cs-0				3,986	197	865			79	5,126
	Fa-0					916					910
	Fs-0					6,822		3,136	35	680	10,672
	La-0								33		3:
	Ld-0							17	357		357
	Lg-0								333		333
	LO-0			2,543					972		3,515
	ON-0		2			45,206	501	2,268	94		48,072
	Pf-0		24		2,556		704				3,284
	SM-0				470						470
	SN-0			15	7,292	38,153	5,669	1,615	22	10,155	62,922
	<u>\$0-0</u>		269	508		5,374	9,839	6,329	131	4,549	27,000
	Subtotal	19,643	295	7,787	14,303	129,270	61,266	51,929	2,227	16,281	303,002
	Subtotal all	22,230	13,065	21,940	42,132	135,964	194,828	58,474	5,932	19,099	513,663
AVERAGE BIOMASS/HA	Dense forests	386	504	407	396	348	436	360	369	247	42(
CLEARED	non-dense	400	344	421	349	337	333	348	36 8		34-
	All forests	398	499	412	379	338	397	349	368	325	37.

Table 13. Approximate biomass cleared in 1990 in each ecosystem type in the Brazilian Legal Amazon (10 MT/year)

ζ,

Table 14. Cerrado biomass

Location	Firewood volume (steres/ha) (a)	Firewood dry weight (MT/ha) (b)	Above-ground biomass (MT/ha) (c)	Total biomass (MT/ha) (d)	Firewood vol. source (page #)
Grande Carajas	120	47	52	82	c(70)
Central Mato Grosso	25	10	11	17	f(445)
Southern Mato Grosso	54	21	24	37	g(363)
Mean	66	26	29	45	

Notes: (a) steres are m³ of stacked firewood, including air spaces between pieces.

(b) 390 kg dry weight/stere for Cerrado in Carajas (Brazil, PGC/CODEBAR/SUDAM, 1986:70).

(c) Assumes 1.12 multiplier for 0-10 cm fraction used for forest and that firewood is >10 cm diameter.

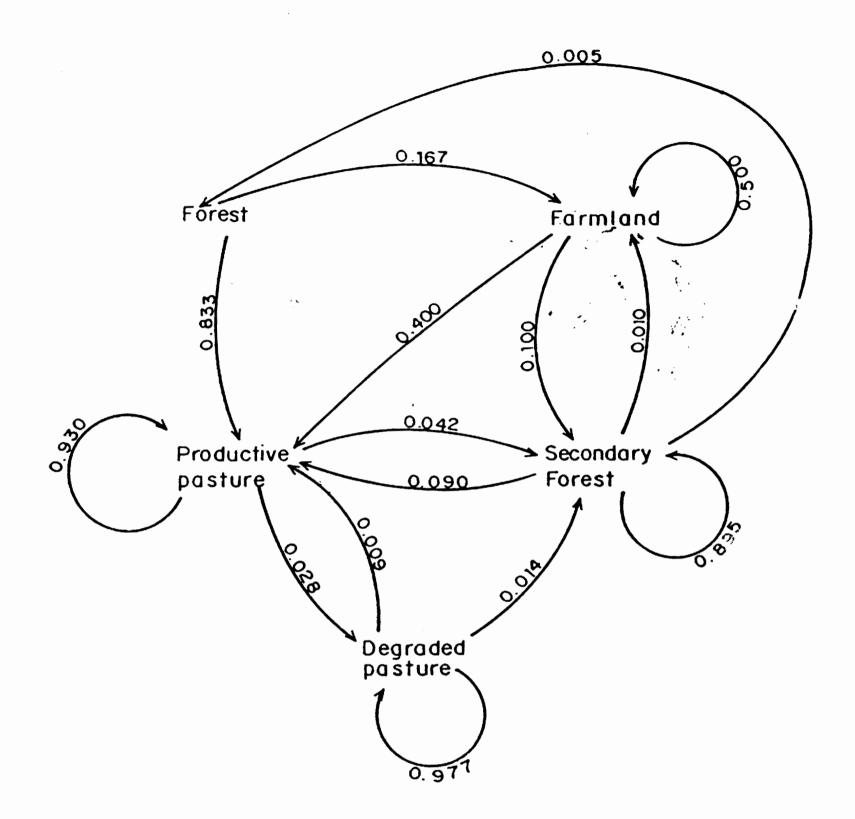
(d) Assumes underground biomass = 64% of total biomass (value used by Seiler and Crutzen, 1980:212 for "scrubland")

٠

..

÷.

(e) Brazil, PGC/CODEBAR/SUDAM, 1986.


(f) Brazil, Projecto RADAMBRASIL, Vol. 26, 1982.

(g) Brazil, Projecto RADAMBRASIL, Vol. 27, 1982.

The transfer probabilities in the diagram and accompanying matrix are approximate, based on the following general observations.⁽³⁾ Annual crops are usually cultivated for only two years in a cropping cycle. Of the areas cleared from forest, about 20% are planted to annual crops and 80% directly to pasture. Of farmland reaching the end of a cropping period, about 20% is allowed to revert to secondary forest and 80% is planted to pasture. Pastures last about 15 years on average before degrading either to woody secondary forest (60%) or unproductive grassland (40%). Woody secondary forest stands (capoeira) are cleared after an average of about ten years (they are not left for the 20-30 year fallow periods that characterize traditional shifting cultivation: see Fearnside, 1985b). Assumption of a ten year average fallow is optimistic, given that colonists in the first six years of settlement on the Transamazon Highway cleared secondary forests of two years age or less with such high frequency that ten-year fallows would be a rarity were the farmers' behavior to remain unchanged (Fearnside, 1984). "Reclaiming" of degraded grasslands to reform pastures takes place in about 10% of an area over a period of approximately 15 years (based on histories in the Paragominas area surveyed by Uhl et al., 1988): this corresponds to a 75-year mean transformation time from degraded grassland to pasture. A degraded grassland would take an average of about 50 years to be transformed to secondary forest. The combination of pasture recovery and reversion to secondary forest implies a mean residence time in the "degraded pasture" category of about 30 years. After 100 years a secondary forest is considered primary forest again (from the point of view of biomass). This is conservative, given that very old secondary forest in Venezuela that did not start as degraded pasture is estimated to take 140-200 years to recover the biomass stock of primary forest (Saldarriaga et al., 1986: 122).

I emphasize that several of the above values represent only informed guesses about quantities for which no quantitative data exist. Grouping land uses into only five categories (forest, farmland, productive pasture, degraded pasture and secondary forest) represents a simplification of the successional path following clearing (see Fearnside, 1990c,d), but is valuable as a first approximation. Changes in the region's rainfall regime as a result of deforestation could worsen the replacement vegetation scenario from the carbon storage point of view by favoring savannaization (Fearnside, 1985c, 1988; Shukla *et al.*, 1990).

Markov matrices carry the assumption that the transfer probabilities remain unaltered over time--something for which there is no guarantee in practice. However, in most agricultural systems the tendency of increased population pressure and increased use intensity over time has been to shorten periods in secondary forest, with resulting lower average biomass for the landscape (e.g., Vermeer, 1970; UNESCO/UNEP/FAO, 1978). The assumption of constant transfer probabilities therefore is conservative from the point of view of greenhouse emissions. The assumption of constant transition probabilities is also optimistic because degradation of soil under pasture, combined with rainfall changes expected should the scale of deforestation greatly expand, are likely to make low-biomass dysclimaxes, including grassy formations, the dominant land cover in a deforested Amazon.

Exponentiation of the matrix of transfer probabilities yields a vector representing the proportion of land in each category after establishment of equilibrium (Jeffers, 1978: 92-97). Performing these calculations indicates that the equilibrium landscape would contain 0.01% forest, 0.04% farmland, 35.6% productive pasture, 43.4% degraded pasture and 20.5% secondary forest (Table 15). A weighted average of the biomass of vegetation in this equilibrium landscape (27 MT/ha) is calculated in Table 16.

The above calculations only refer to land that is cleared for agriculture and ranching. Hydroelectric development also removes forest land.

4.2. Fate of Biomass Carbon Stocks

10

The carbon stocks in the forest will change over a period of years to approach those in the equilibrium landscape, with the quantities in each pool increasing or decreasing at a different pace. The initial burn releases carbon immediately, while subsequent burns will do so over a period of about 10 years. Bacterial decomposition and termite activity will also be largely over the first decade. Soil carbon pools will change relatively quickly at the surface, but may take much longer for deeper pools (only carbon to 20 cm is considered in the current calculation). Charcoal is a very long term pool, considered to be permanently sequestered in the analysis. The carbon calculations in the present paper represent "committed carbon," or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. In fact, deforestation rates increased over the 1970-1987 period, and declined over the 1987-1991 period.

Char formed in burning is one way that carbon can be transferred to a long-term pool from which it cannot enter the atmosphere. A burn of forest being converted to cattle pasture near Manaus resulted in 2.6% of above-ground carbon being converted to char (Fearnside *et al.*, nd-d). This is substantially lower than the 15-23% assumed by Seiler and Crutzen (1980: 236) when they identified charcoal formation as a potentially important carbon sink (more recent calculations have used 5-10% charcoal yield: Crutzen and Andreae, 1990: 1672). Using the observed lower rate of charcoal formation would make global carbon cycle models indicate a larger contribution of greenhouse gases from tropical deforestation than has been the case using the higher rates of carbon transfer to long term pools (e.g., Goudriaan and Ketner, 1984).

The burning behavior of ranchers can alter the amount of carbon passing into a long-term pool as charcoal. Carbon budget calculations generally assume that forest is only burned once, and that all unburned biomass subsequently decomposes (e.g., Bogdonoff *et al.*, 1985). This is not the typical pattern in cattle pastures that dominate land use in deforested areas in the Brazilian Amazon. Ranchers reburn pastures at intervals of 2-3 years to combat invasion of inedible woody vegetation. Logs lying on the ground when these reburnings occur are often burned. Some char formed in earlier burns can be expected to be combusted as well. A typical scenario of three reburnings over a ten-year period would raise the percentage of above-ground C converted to charcoal from 2.6% to 3.2% (Table 18), using the parameters for transformations of gross carbon stocks given in Table 17. The carbon transformations over a typical 10-year sequence are shown diagrammatically in Figure 4.

Table 15. List of parameters for transformations of gross carbon stocks

Parameter	Value	Units	Source	Comment
Total biomass	372	MT/ha dry weight	Table 13	Weighted mean for areas being cleared in 1990
Carbon content of biomass	0.5	fraction of dry weight	Brown & Lugo 1984	
Above-ground fraction	0.809		Table 8	Average at Manaus, Jari and Paragomi
Combustion efficiency in initial burn	0.275	fraction of C released	Fearnside et al. nd-c	Ncar Manaus, Amazonas
Char C fraction in initial burn	0.026		Fearnside et al. nd-c	Ncar Manaus, Amazonas
Fraction of char on biomass following initial burn	0.89		preliminary data from Fearnside et al. nd-d	Near Altamira, Pará
Exposed to soil char c transfer fraction during 1st interval	0.3		guess	1st interval = 4 years
Fraction surviving decay in 1st interval	0.41	2	Calculated from Uhl and Saldarriaga nd (a)	
Combustion efficiency in lst reburn	0.145	fraction of C released	Preliminary data from Fearnside et al. nd-f	Burn in Apiau, Roraima
Fraction converted to char in 1st return	0.011		⁴ Preliminary data from Fearnside <i>et al.</i> nd-f	Burn in Apiau, Roraima (NB: includes charcoal from capoeira)
Char C combustion fraction in 1st reburn	0		Assumed zero b/c char converstion value is net	
Fraction surviving decay in 2nd interval	0.57		Calculated from Uhl and Saldarriaga nd (b)	2nd interval = 3 years
Combustion efficiency in 2nd reburn	0.011		Assumed equal to 1st reburn	
Fraction of C converted to char in 2nd reburn	0.89		Assumed equal to initial burn	
Exposed to soil char C transfer fraction during 2nd interval	0.3		guess	
Char C combusted fraction in 2nd reburn	0		Assumed zero b/c char conversion value is net	
Fraction of char on biomass after 2nd reburn	0.89		Assumed equal to initial burn	
Exposed to soil char C transfer fraction during 3rd interval	0.3		guess	
Fraction surviving decay in 3rd interval	0.77		Calculated from Uhl and Saldarriaga nd (b)	3rd interval = 3 years
Combustion efficiency in 3rd return	0.145	fraction of wood C released	Assumed equal to 1st reburn	
Fraction of C to char in 3rd reburn	0.011		Assumed equal to 1st reburn	
Char C combustion fraction in 3rd reburn	0		Assumed zero b/c char conversion value is net	
Soil C release from top 20 cm	3.92	MT/ha	Fearnside 1985a, 1987a	
Replacement vegetation biomass	27	MT/ha	Table 17	Weighted average for equilibrium land

Notes: (a) Uhl and Saldarriaga (nd) report an average of 97.3 MT of above ground dry weight biomass remaining 3-4 years after clearing a Venezuelan forest whose original above-ground biomass was believed to be 290 MT/ha based on estimates in the area by Stark and Spratt (1977). Assuming the combustion efficiency (0.275) and charcoal formation fraction (0.026) measured in Brazil (Fearnside *et al.*, nd-b), the post-burn above-ground biomass exposed to decay in Venezuela would be reduced to 200 MT/ha. Loss to decay over the 3.5 year interval (using the midpoints of the range of site ages) would therefore be 51%. Loss in a 4-year interval following the initial burn would be 59%.

(b) Uhl and Saldarriaga (nd) report average biomass as 56 MT/ha for 6-7 year-old sites; 45.3 MT/ha for 8-10 year old sites, 22.7 MT/ha for 12-20 year old sites and 7 MT/ha for 30-40 year old sites. Assuming a linear decline in wood mass within each age interval (and using midpoints of age ranges as the limits of the intervals), the loss per year as a percentage of the wood mass at the beginning of each interval would be 14.7% for 0-3.5 years, 14.2% for 3.5-6.5 years, 7.6% for 6.5-9 years, 7.2% for 9-16 years and 3.6% for 16-35 years. These loss rates have been used to calculate loss values for the intervals used in the present calculation (0-4 years, 4-7 years and 7-10 years).

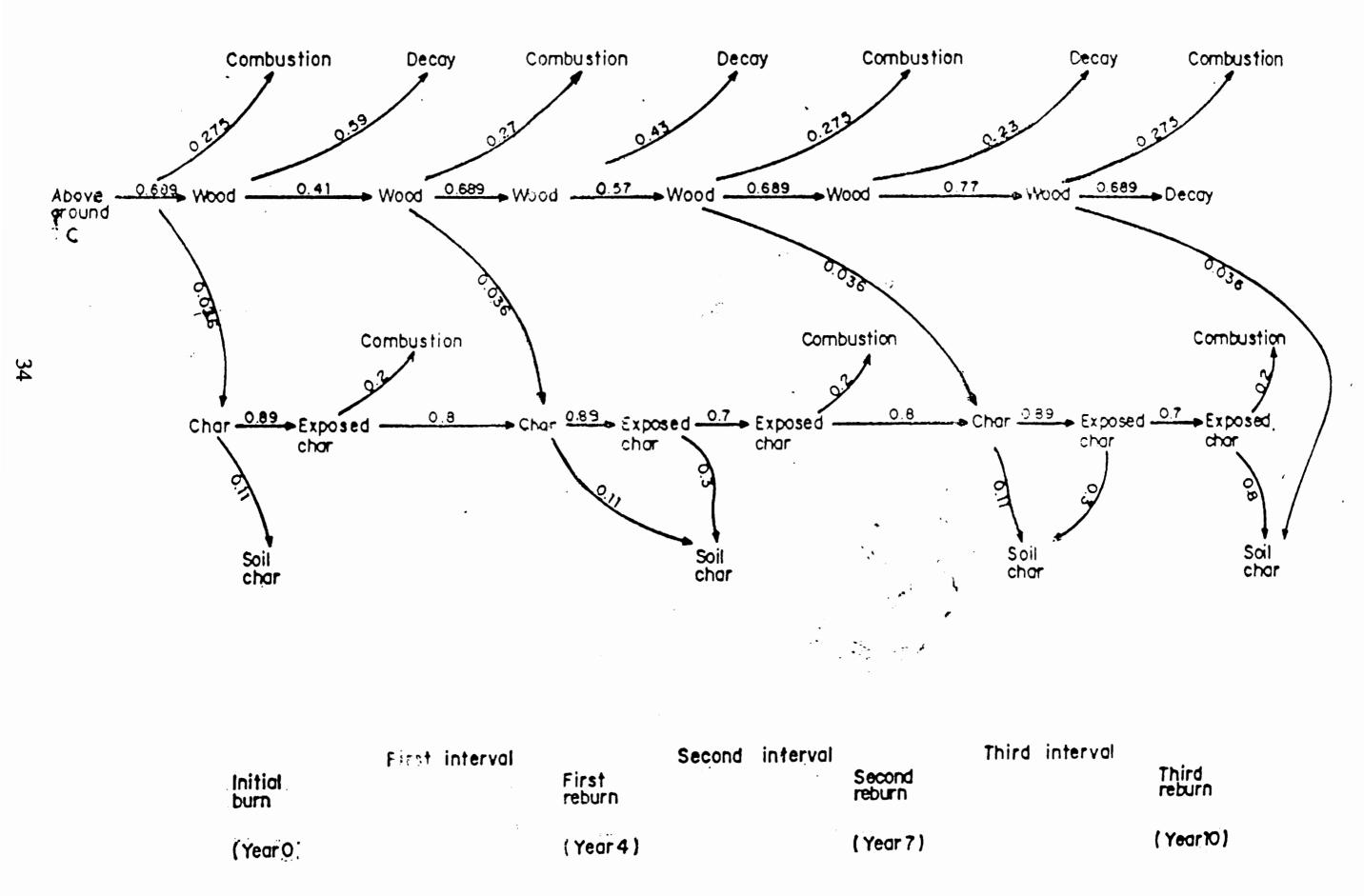
Initial state	Later state					
	Forest	Agriculture	Productive pasture	Degraded pasture	Secondary forest	
Forest	0	0.167	0.833	0	0	
Agriculture	0	0.500	0.400	0	0.100	
Productive pasture	0	0	0.930	0.028	0.042	
Degraded pasture	0	0	0.009	0.977	- 0.014	
Secondary forest	0.005	0.Q10	0.090	0	`0.895	
Equilibrium proportions	0.01%	0.04%	35.6%	43.4%	20.5%	

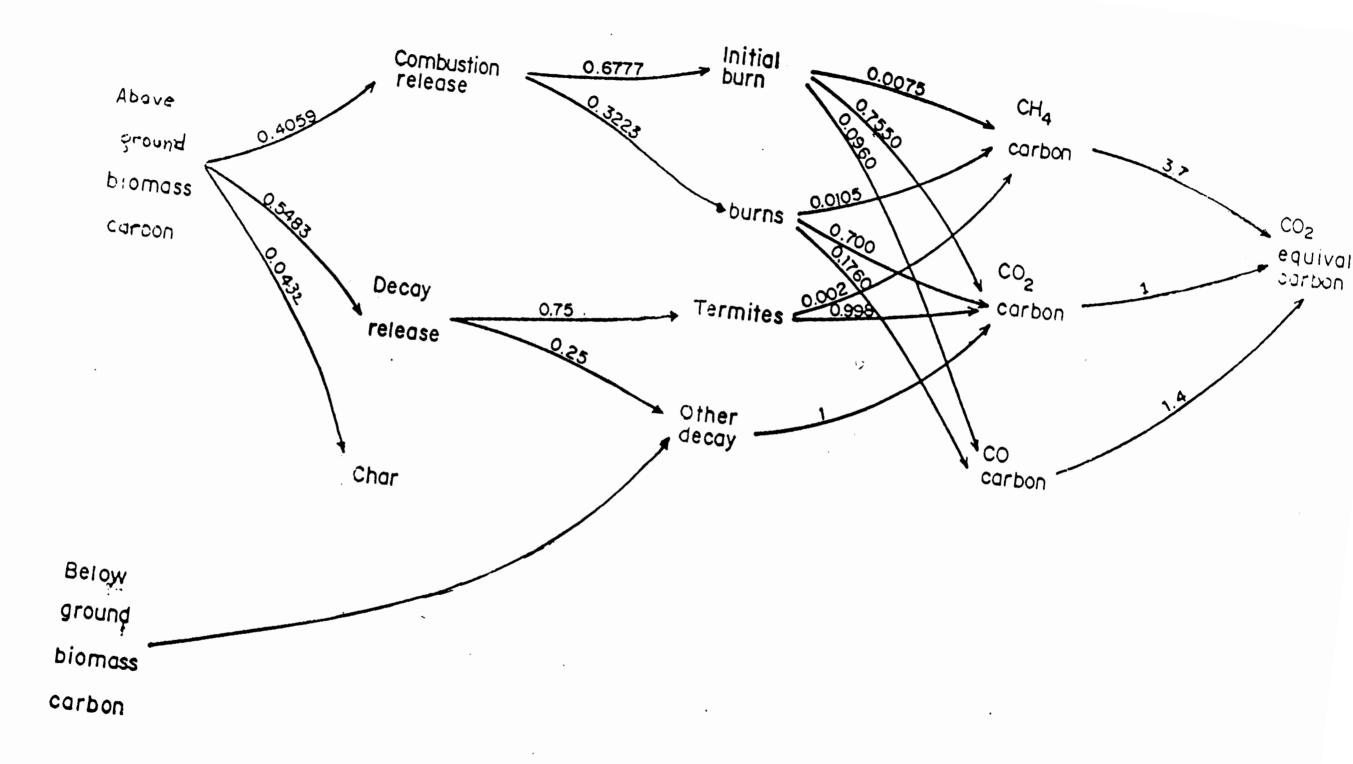
• .

Table 16.	Markov	matrix	of	transition	probabilities
-----------	--------	--------	----	------------	---------------

5. SOURCES AND SINKS OF GREENHOUSE GASES

5.1. Burning


Biomass carbon not converted to charcoal is released through combustion and decay, the relative importance of each affecting the gases emitted. If an area were burned only once, 28.4% of the pre-burn above-ground carbon would be released through combustion and 69.0% through decay. With a typical scenario of three reburnings 35.0% would be released through combustion and 61.9% through decay. Both combustion and decay release other trace gases such as methane.


The parameters for carbon emissions (CO₂, CH₄ and CO) from the different burning and decay transformations of biomass are given in Table 18. Two sets of parameters are given: a "low methane" and a "high methane" scenario, reflecting the range of values appearing in the literature for releases from such sources as termites and flaming and smoldering burns. Carbon emissions as CO₂, CH₄ and CO are diagrammed in Figure 5 with parameters for the low-methane scenario. The low and high scenarios might more accurately be designated "trace gas" rather than "methane," as other gases are also included. Parameters for other sources of greenhouse gases from land-use change are given in Table 19, and trace gas release parameters are given in Table 20.

The amount of methane released is heavily dependent on the ratio of smoldering to flaming combustion; smoldering releases substantially more CH_4 . Aircraft sampling over fires (mostly from virgin forest clearing) indicates that a substantial fraction of combustion is in smoldering form (Andreae *et al.*, 1988). Logs consumed by reburning of cattle pastures are virtually all burned through smoldering rather than flaming combustion (personal observation).

Carbon monoxide (CO) is also produced by burning. This gas contributes indirectly to the greenhouse effect by impeding natural cleansing processes in the atmosphere that remove a number of greenhouse gases, including methane. Carbon monoxide removes hydroxyl radicals (OH), which react with CH₄ and other gases, including various chlorofluorocarbons (CFCs) that provoke stratospheric ozone depletion, in addition to the greenhouse effect.

Burning also releases some nitrous oxide (N_2O) , which contributes both to the greenhouse effect and to the degradation of stratospheric ozone. A sampling artifact has made measurements prior to 1989 unusable (Muzio and Kramlich, 1988). Estimates after discovery of the artifact indicate N₂O emissions from biomass burning are substantially lower than had previously been thought (Crutzen, 1990). The parameters used in the present estimate (Table 20) are unaffected by the artifact.

Category	Equilibrium proportion	Biomass total (mt/ha)	Biomass source	Residence time (years)	Transition time source
Forest	0.001	394	(a)	1	(a)
Farmland	0.004	10	(b)	2	(e)
Productive pasture	0.356	10.67	(c)	15	(f)
Degraded pasture	0.434	27	(d)	30	(f)
Secondary forest	0.205	53	(d)	10	(g)
Weighted mean:		26.82		•	

Table 17. Replacement vegetation weighted biomass calculation

Sources:

(a) Table 12; Secondary forest is assumed to be equivalent to original forest from the standpoint of biomass after 100 years. Saldariaga *et al.* (1986:96) calculated recovery in 144-189 years in Venezuela.

(b) guess

- (c) Fearnside et al., nd-d; see Fearnside, 1989e.
- (d) Fearnside, 1987a
- (e) general observation (see Fearnside, 1985b).
- (f) based on study of large ranchers in Paragominas, Pará (Uhl et al., 1988).
- (g) based on study of small farmers on Transamazon Highway (Fearnside, 1984, 1986a).

Table 18. Parameters for carbon emissions

Scenario	Component	Transformation	Value (C released in this form/C present in component	MT gas released/ MT fuel burned	Basis and reference
Both high and	Above-ground	combustion release	0.3495		Calculated from parameters in Table 15 and Figure 4.
low methane scenarios	biomass carbon	decay release	0.6188		Calculated from parameters in Table 15 and Figure 4.
		Charcoal carbon formation (initial + subsequent burns)	0.0318		Calculated from parameters in Table 15 and Figure 4.
	Carbon released	initial burn	0.6777		Calculated from parameters in Table 15 and Figure 4.
	through combustion	reburns	0.3223		Calculated from parameters in Table 15 and Figure 4.
		Combustion release of below ground biomass	0		Assumption
	Carbon released	Decay release through termites (above ground)	0.75		Based on statement by A. Bandeira that "most" of biomass is ingested
	through decay	Decay release through other decay (above ground)	0.25		Based on statement by A. Bandeira that "most" of biomass is ingested
		Decay release of below-ground biomass	1		Assumption
		Decay release through termites (below ground)	0		Assumption (unrealistically low)
		Decay release through other decay (below ground)	-1		Assumption (unrealistically high)
Low methane scenario	Carbon released	CH4 carbon	0.0075	0.005	Kaufman et al. 1990 from Ward 1986
SCEIMINO .	by combustion in initial burn	CO2 carbon	0.775	1.55	Kaufman et al. 1990 from Ward 1986
		CO carbon	0.096	0.12	Kaufman et al. 1990 from Ward 1986
	Carbon released	CH4 carbon	0.0105	0.007	Kaufman et al. 1990 from Ward 1986
	by combustion in reburns	CO2 carbon	0.7	1.4	Kaufman et al. 1990 from Ward 1986
		CO carbon	0.176	0.22	Kaufman et al. 1990 from Ward 1986
	Carbon released	CH4 carbon	0.002	0.001	Seiler et al. 1984 cited by Freer et al. 1986
	through termites	CO2 carbon	0.998	1.996	Assumed all C not released as methane is CO ₂
High methane	Carbon released	CH4 carbon	0.755	0.006	Kaufman et al. 1990 from Ward 1986
scenario	by combustion in initial burn	CO2 carbon	0.775	1.55	Kaufman et al. 1990 from Ward 1986
		CO carbon	0.12	0.15	Kaufman et al. 1990 from Crutzen et al. 1985
	Carbon released	CH4 carbon	0.0165	0.011	Kaufman et al. 1990 from Groenberg et al. 1984
	by combustion in reburns	CO2 carbon	0.7	1.4	Kaufman et al. 1990 from Ward 1986
		CO carbon	0.224	0.28	Kaufman et al. 1990 from Greenberg et al. 1984 and Ward 1986
	Carbon released	CH4 carbon	0.0079	0.005	Goreau and de Mello 1987
	through termites	CO2 carbon	0. 99 21	1.984	Assumed all C not released as methane is CO ₂

Ş

Factor	Units	Value	Reference	Note
Soil carbon from top 20 cm	MT C/ha	3.92	Fearnside, 1985a	(a)
Cerrado biomass carbon	MT C/ha	32.33	Table 14	(b)
Hydroelectric dams CH4	mg CH4/m ² /day	43	Aselmann and Crutzen, 1990: 446	(c)
Cattle CH4	kg CH4/head/year	55	Ahuja, 1989	
Cattle stocking rate	head/ha	0.3	Fearnside, 1979	(d)
Pasture soil N20	kg N20/ha/year	3.8	Luizao et al, 1989	(e)

Table 19. Parameters for other sources of greenhouse gases from land-use change

Notes: (a) For conversion to pasture at Paragominas, based on Falesi (1976: 31 and 42) for carbon contents and Hecht (1981:95) for soil densities.

(b) Based on conversion to pasture (total biomass 10.7 MT/ha) of Cerrado with average total biomass of 45 MT/ha.

(c) Global average for lakes.

(d) Feeding capacity after 3 years.

(e) Full annual cycle under pasture and forest at Manaus.

ς.

Table 20. Trace gas parameters

Factor	Gases	Value	Units	Source
Intact forest soil sink	CH4	MT C/ha/yr	-0.0004	Keller et al. 1986
Burning release	N20 (a)(b)	MT gas/CO2 emitted from burn	0.0002	Cofer et al. (1988) cited by Kaufman et al. 1990
Burning release	N20 (c)(d)	Mt gas/MT C	0.0017	Calculated by Keller et al. 1991:146 from Andreae et al. 1988
Burning release	NOx (e)	Mt gas/MT C burned	0.0079	Keller et al. 1991:146
Intact forest release	NOx (e)	MT gas/ha/yr	0.0131	Kaplan et al. 1988; see Keller et al. 1991.
Flaming burn release	Total particulates	MT/MT CH4 gas from burn	3.33	Calculated by Kaufman <i>et al.</i> 1990:380 from Ward and Hardy (1984) and Ward (1986)
Smoldering burn release	Total particulates	MT/MT CH4 gas from burn	1.67	Calculated by Kaufman <i>et al.</i> 1990:380 from Ward and Hardy (1984) and Ward (1986)
Flaming burn release	NMHC (b)	MT/MT CH4 gas from burn	0.67	Derived using factor of 0.2 MT NMHC/MT particulates calculated by Kaufman <i>et al.</i> (1990:380).
Shouldering burn release	NMHC (b)	MT/MT CH4 gas from burn	0.50	Derived using factor of 0.3 MT CH4/MT particulates calculated by Kaufman et al. (1990:380).
Mixed burn release	NMHC (d)(f)	MT/MT C burned	0.0131	Keller et al. (1991:146) from measurements of Andreae et al. (1988).
Intact forest release	NMHC	MT gas/ha yr	0.12	Rasmussen and Khalil 1988:1420

Notes: (a) Intact forest release accounted for in pasture soil calculation.

(b) Used in low methane scenario.

(c) results in 0.088 MT gas/ha burned, or three times the 0.032 MT gas/MT C burned obtained using the parameter relating N20 to CO2.

(d) Used in high methane scenario

(e) NOx weight given NO2 basis (following Shine et al. 1990:61)

(f) NMHC emission corresponds to 0.69 MT gas/ha burned, much higher than values derived from methane, which are (for high and low methane scenarios, respectively): 0.21 and 0.25 MT NMHC/ha burned for flaming combustion and 0.06 and 0.09 MT NMHC/ha burned for shouldering combustion.

5.2. Soil Carbon

Release of soil carbon would be expected when forest is converted to pasture because soil temperatures increase when forest cover is removed, thus shifting the balance between organic carbon formation and degradation to a lower equilibrium level (Cunningham, 1963; Nye and Greenland, 1960). A number of studies have found lower carbon stocks under pasture than forest (reviewed in Fearnside, 1980). For the same reason, naturally occurring tropical grasslands also have much smaller soil carbon stocks per hectare than do forests (Post *et al.*, 1982). Lugo *et al.* (1986), however, have found increases in carbon storage in pasture soils in Puerto Rico, especially in drier sites, and suggest that tropical pastures may be a carbon sink. The present study treats soils as a source of carbon when forests are converted to pasture. All carbon released from soils is assumed to be in the form of CO_2 .

Soil carbon in pasture is taken to be that in a profile equivalent to what is compacted from a 20 cm profile in the forest. Parameters used in deriving soil carbon changes are given in Table 21. The layer compacted from the top 20 cm of forest soil releases 3.92 MT/ha of carbon (the value used in the current calculations).

The 3.92 MT/ha release from the top 20 cm of soil represents 38% of the pre-conversion carbon present in this layer. This is higher than the 20% of pre-conversion carbon in the top 40 cm of soil that Detwiler (1986) concluded is released, on average, from conversion to pasture. The difference is not so great as it might seem: since carbon release is greatest nearest the surface, considering soil to 40 cm would thereby reduce the percentage released. One factor acting to compensate for any overestimation possibly caused by using a higher percentage of soil carbon release is the low bias introduced by having considered only the top 20 cm.

If soil to one m depth is considered (the usual practice), and the same 38% of preconversion carbon is released, then the release would be increased to 9.33 MT/ha (Table 21). The calculation to one m depth considers that the top 20 cm of soil contains 42% of the carbon in a one m profile (based on samples near Manaus: Fearnside, 1987a). Brown and Lugo (1982: 183) have used a similar relationship to estimate carbon stocks to a depth of one m from samples of the top 20 cm, considering 45% of the carbon in a one m profile to be located in the top 20 cm.

5.3. Termites and Decay

Termites are the major agent of decay for unburned wood (Uhl and Saldarriaga, nd). No measurement exists of the percentage of felled biomass that is ingested by termites in Amazonian clearings. Termite populations increase to a peak approximately 5-6 years after clearing, and subsequently decline as the available wood disappears (A.G. Bandeira, personal communication, 1990). It is assumed that none of the below-ground wood is ingested by termites: a conservative assumption given that termite species that eat buried wood are known to occur (Bandeira and Macambira, 1988) and termites consume underground biomass in other regions, such as Africa (e.g., Wood *et al.*, 1977). A lively controversy surrounds the question

	Units	Value	Source
PARAMETERS			
Soil density in forest	g/cm ³	0.56	Hecht 1981:95
Carbon in forest soil	% by wt.	0.91	Falesi 1976:31 & 42
Carbon in pasture soil	% by wt.	0.56	Falesi 1976:31 & 42
Top 20 cm C as fraction of 1 m C	% by wt.	42	Fearnside 1987
CALCULATED VALUES			
Top 20 cm of soil:			
Soil dry weight	MT/ha	1120	
Carbon in forest soil	MT/ha	10.19	
Carbon in pasture soil compacted from top 20 cm of forest soil	MT/ha	6.27	и
Release from top 20 cm	MT/ha	3.92	
Release fraction of pre-conversion soil C	% by wt.	38	
Top meter of soil:			
Soil dry weight	MT/ha	5,600	
Carbon in forest soil	MT/ha	24.27	
Carbon in pasture soil	MT/ha	14.93	
Release from top meter	MT/ha	9.33	
Release fraction of pre-conversion soil C	% by wt.	38	,

Table 21. Soil carbon parameters and calculations

of how much methane is produced by termites (Collins and Wood, 1984; Fraser *et al.*, 1986; Rasmussen and Khalil, 1983; Zimmerman *et al.*, 1982, 1984). Support for substantial emission potential from termites in deforested areas in the Amazon is provided by high population densities in fields in Pará where forest biomass remains present (Bandeira and Torres, 1985), and high methane emissions from termite mounds near Manaus (Goreau and de Mello, 1987). The low-methane scenario in the present paper assumes that 0.2% of the carbon ingested by termites is transformed into methane (Seiler *et al.*, 1984), while the high-methane scenario assumes that 0.77% of the carbon is converted to methane (calculated from Goreau and de Mello, 1987). The values of Zimmerman *et al.* (1982, 1984) are not used. The billions of metric tons of wood that these insects would devour as Amazonia is deforested cannot help producing substantial contributions of methane regardless of which production rates prove to be correct.

5.4. Cattle and Pasture

Methane is produced in the rumens of the cattle that occupy pastures in deforested areas. The portion of the area considered to be maintained under pasture is that derived from the equilibrium landscape (Tables 16 and 17). Parameters used to derive methane emissions from cattle are included in Table 19.

Pasture soils in Amazonia emit N_2O in quantities substantially higher than forest soils when measurements are made over a full annual cycle (Luizão *et al.*, 1989). Most emissions are in the wet season, and are not reflected in measurements restricted to the dry season (e.g., Goreau and de Mello, 1987).

Unlike the emissions from the initial burning, conversion of a given hectare to pasture does not result a one-time release of greenhouse gas, but rather a continuous additional flux at this rate for as long as the area is maintained under this land use.

One factor not included in the calculation is the production of trace gases by the reburning of pasture and secondary forest. The combustion of logs remaining from the original forest is included. The burning of the biomass of the pasture itself and of secondary forest does not contribute to net release of carbon dioxide, as the same amount of carbon is reabsorbed when the vegetation regrows. However, CH_4 , CO, N_2O and NO_x do increase as a result of the reburnings as these gases do not enter photosynthetic reactions. Methane degrades to CO_2 after an average of 10 years (Shine *et al.*, 1990: 60), and CO degrades after a few months (Thompson and Cicerone, 1986: 10,857), after which the carbon can return to the vegetation. The trace gas inputs of reburning the replacement vegetation represent one of several factors not included in the current calculation, but which are hoped to be included in more refined versions in the future. A number of factors not included in the present calculation are summarized in Table 22.

Table 22. Factors not considered in current calculation						
Factor	Gases					
Reburning pasture	CO, CH4, N20, NOx					
Reburning secondary forest	CO, CH4, N20, NOx					
Emissions from intact replacement vegetation	CH4, NOx, NMHC					
Soil release below 20 cm	CO2					
Forest degradation (logging, etc.)	CO2					
Cerrado burning frequency acceleration	CO, CH4, N20, NOx					
Graphitic C in soot	CO2					

Table 22. Factors not considered in current calculation

2

e

.

.

5.5. Removal of intact forest sources and sinks

Deforestation makes an additional contribution to methane by removing a CH₄ sink in the soil of intact forest (Table 20). Removal of intact forest sources and sinks also affect the contribution of deforestation to a variety of compounds of nitrogen and oxygen (NO_x) and to non-methane hydrocarbons (NMHC), especially isoprenes. In the case of NMHC, the net effect of deforestation is to decrease this greenhouse gas source over the 20-year period used in the current calculation, canceling 4-5% of the impact of other emissions. The effects of removing intact forest sources are included in the parameters for trace gases (Table 20). No forest sink is explicitly included for N_2O because the emission values used for this gas represent the net difference between forest and pasture emissions.

5.6. Hydroelectric Dams

The calculations presented above consider only emissions from conversion of natural vegetation to cattle pasture -- the dominant trend in Brazilian Amazonia today. Another form of conversion with great potential impacts is construction of hydroelectric dams in rain forest areas. These release greenhouse gases both by the decomposition of the dead forest left standing in the reservoirs and by the continuing release of methane from the flooded areas (especially in the portions that are alternately dried and flooded).

Hydroelectric dams are commonly believed to have no impact on the greenhouse effect, in contrast to fossil fuel use. The validity of this conclusion, however, depends heavily on the biomass of the vegetation in the flooded areas and on the power output of the dams. In Amazonia, dams are frequently worse than petroleum from the point of view of greenhouse emissions. The worst case is the Balbina Dam, which was closed in 1987. Located on relatively flat terrain, Balbina's shallow 2360 km² reservoir can only generate enough power to deliver an average of 109 megawatts to Manaus (Fearnside, 1989b). The biomass of the flooded forest is now decomposing, releasing its carbon to the atmosphere. Generating the same energy from petroleum would take 250 years to equal the carbon release from flooding the Balbina reservoir (based on Junk and de Mello, 1987; see Fearnside, 1989b).

The Amazonian várzea (white water floodplain) has been identified as one of the world's major sources of atmospheric methane (Mooney et al., 1987). The várzea occupies about 2% of the 5 X 10^6 km² Legal Amazon, the same percentage that would be flooded if all of the 100,000 km² of reservoirs planned for the region are created (Brazil, ELETROBRÁS, 1987: 150). Virtually all of the planned hydroelectric dams are in the forested portion of the region, of which they would represent approximately 2.5-2.9%. Were these reservoirs to contribute an output of methane per hectare on the same order as that produced by the várzea, they would together represent a significant contribution to the greenhouse effect. Like biogenic release of N₂O, this would be a permanent addition to greenhouse gas sources, rather than a one-time input. The parameter for methane emissions from hydroelectric dams included in Table 19 (43 mg CH₄/m²/day) is a mean for lakes of the world, and is undoubtedly conservative for the anoxic conditions that characterize the bottoms of Amazonian reservoirs like Balbina.

Measurements in natural várzea lakes indicate emissions ranging from 5-60 mg CH₄/m²/day in permanent aquatic portions of the lakes free of macrophytes, to 15-200 mg CH₄/m²/day in flooded forest (Wassmann and Thein, 1989). In 1990, no new reservoirs were filled in the Legal Amazon. The emissions can be significant, however: for reservoirs filled in 1988, 20 X 10⁶ MT of CO₂-equivalent carbon were emitted (Fearnside, nd-a, using global warming potentials at 5% discount rate from Lashof and Ahuja, 1990).

The quantities of gases released by each source and absorbed by each sink are given in Table 23 for the low-methane scenario. Table 24 presents the corresponding results for the high methane scenario. Although the emissions of CO_2 dwarf the absolute quantities of the other gases, the greater greenhouse impact per ton of the latter gives them a significant role in deforestation's contribution to global warming.

6. GLOBAL WARMING IMPACT OF EMISSIONS

The effect of trace gases such as methane and carbon monoxide is to raise the impact of each ton of carbon released by Amazonian deforestation. Fossil fuel burning, in contrast, releases almost only CO_2 . The technical uncertainties between the low and high methane scenarios have much less effect than does the policy framework used to interpret the results, which determines the time horizon of the calculation -- or, alternatively, the discount rate (Fearnside, nd-a).

The global warming potentials used in the current calculation are those derived by the Intergovernmental Panel on Climate Change (IPCC) for its 20-year scenario, including indirect effects (Shine et al., 1990: 60). These are presented in Table 25. The 20-year time horizon is justified by IPCC as that reflecting the likely time period for climatic impacts on rainfall regimes in temperate regions, one of the major global consequences of global warming. The IPCC also made calculations with 100 and with 500 year time horizons. The 100-year horizon is justified as that corresponding to major changes in sea levels (Shine et al., 1990: 58). The IPCC gives no justification for the 500-year horizon, and, indeed, it is difficult to explain why this calculation was made other than to direct attention to the 100-year values as a form of "middle" estimate. Although the IPCC notes that "these three different time horizons are presented as candidates for discussion and should not be considered as having any special significance" (Shine et al., 1990: 59), the more extensive and graphic presentation of results from the 100-year integration, including those in the IPCC report's executive summary, tends to draw attention to this set of parameters. However, for a variety of reasons both legitimate and not, the events of the next 20 years are of much more concern to the world's population today than are events 80-100 years in the future. The longer the time horizon used in greenhouse calculations, the less the impact of short-lived but highly absorbing gases like methane that are produced by tropical deforestation.

Sources		Area affected	Emissions (million MT of gas)					
		(10 ^s km ²)	CO2	CH4	со	N2O	NOx	NMH
FOREST	Initial burn	13.8	193.21	0.57	13.71	0.04	0.45	0.38
	Reburns	13.8	47.26	0.22	6.81	0.01	0.12	0.11
	Termite methane	13.8		0.36				
	Other decay	13.8	709.45					
	Cattle (a)	4.9		0.16				
	Pasture soil (a)	4.9				0.04		
	Loss of intact forest sources (a)	11.0		-0.01			-0.29	-2.63
	Soil C stock	13.8	21.67					
	Regrowth	13.8	-74.11					
	Hydroelectric (a)	0.0		0.00				
	Forest subtotal		897.47	1.29	20.52	0.09	0.28	-2.14
CERRADO	Initial burn	10.0	20.64	0.06	1.46	0.00	0.05	0.04
	Reburns	10.0	1.99	0.01	0.29	0.00	0.01	0.00
	Termites	10.0		0.04				
	Other decay	10.0	75.58					
	Cattle (a)	10.0			•			
	Pasture soil (a)	10.0				0.08		
	Loss of intact cerrado sources (a)(b)	10.0		-0.01			-0.02	-0.14
	Soil C stock	10.0	15.68					
	Regrowth	10.0	-21.34					
	Cerrado subtotal		92.55	0.10	1.75	0.08	0.04	-0.09
TOTAL LEGAL AMAZON		_	990.02	1.39	22.27	0.17	0.32	-2.24

Table 23. Greenhouse gas emissions by source for 1990 clearing in the Legal Amazon, Low Methane Scenario

Notes: (a) Recurring effects (cattle methane, forest soil methane sink, pasture soil N20, hydroelectric methane) summed for 20-year period for consistency with IPCC 20-year horizon calculation.

(b) Intact cerrado source for NOx and NMHC derived from the forest per-hectare emission assuming emission is proportional to the tree leaf dry weight biomass in each ecosystem. Cerrado tree leaf biomass (dry season) = 0.756 MT/ha (dos Santos, 1989:194); Forest (at Tucurui, Pará) = 12.94 MT/ha (Revilla Cardenas et al., 1982:6).

•

Ľ

Sources		Area affected	Emissions (million MT of gas)					
		(10 ³ km²)	CO2	CH4	СО	N2O	NOx	NMHC
FOREST	Initial burn	13.8	193.21	0.69	17.14	0.10	0.45	0.75
	Reburns	13.8	47.26	0.34	8.66	0.03	0.12	0.20
	Termite methane	13.8		1.40				
	Other decay	13.8	706.30					
	Cattle (a)	4.9		0.16				
	Pasture soil (a)	4.9				0.04		
	Loss of intact forest sources (a)	11.0		-0.01		(•)	-0.29	-2.63
•	Soil C stock	13.8	21.67					
	Regrowth	13.8	-74.11					
	Hydroelectric (a)	0.0		0.00				
	Forest subtotal	* · * * • _ 	894.33	2.58	25.80	0.16	0.28	-1.68
CERRADO	Initial burn	10.0	20.64	0.07	1.83	0.01	0.05	0.08
	Reburns	10.0	1.99	0.01	0.36	0.00	0.01	0.01
	Termites	10.0		0.14				
	Other decay	10.0	70.35					
	Cattle (a)	10,0						
	Pasture soil (a)	10.0				0.08		
	Loss of intact cerrado sources (a)(b)	10.0		-0.01			-0.02	-0.14
	Soil C stock	10.0	15.68					
	Regrowth	10.0	-21.34	*****				
	Cerrado subtotal		87.32	0.22	2.20	0.09	0.04	-0.05
TOTAL LEGAL AMAZON			981.65	2.80	28.00	0.25	0.32	-1.74

Table 24. Greenhouse gas emissions by source for 1990 clearing in the Legal Amazon, High Methane Scenario

Notes: (a) Recurring effects (cattle methane, forest soil methane sink, pasture soil N20, hydroelectric methane sink, pasture soil N20, hydroelectric methane) summed for 20-year period for consistency with IPCC 20-year horizon calculation.

(b) Intact cerrado source for NOx and NMHC derived from the forest per-hectare emission assuming emission is proportional to the tree leaf dry weight biomass in each ecosystem. Cerrado tree leaf biomass (dry season) = 0.756 MT/ha (dos Santos, 1989:194); Forest (at Tucurui, Pará) = 12.94 MT/ha (Revilla Cardenas et al., 1982:6).

ς.

Gas	Atmospheric life (years)		Global warming potential (a) including indirect effects (per ton of gas relative to carbon dioxide)					
		20-year cutoff	100-year cutoff	500-year cutoff				
CO2	120	1	. 1	1				
CH4	10	63	21	9				
со		7	3	2				
N20	150	270	290 -	190				
NOx		150	40	14				
NMHC	2	31	11	6				
Indirect Effe	cts included in above to	tals:		¥.				
Source gas	Greenhouse gas affected			· .				
CH4	Tropospheric 03	24	8	3				
CH4	CO2	3	3	3				
CH4	Stratospheric H20	10	4	1				
СО	Tropospheric 03	5	1	0				
со	CO2	2	2	2				
NOx	Tropospheric 03	150	40	14				
NMHC	Tropospheric 03	28	8	3				
NMHC	CO2	3	3	3				

Table 25. Global warming potential of trace gases

Note: (a) Shire et al., 1990:60; includes indirect effects.

1	GN	G			Low meth	ane scenario	,				High meth	ane scenario	,		Control	bution of			Gross	carbon		
		W _ P (a)		nt emitted (T of gas/ye	•	-	ivalent (mil of gas/year)			nt emitted (T of gas/ye	-	CO2 equ	uivalent (m gaa/yr)	nil. MT of	each	gas to fect (%)	Fo	rest	Ce	er r .	To	otal
		-	Forest	Cerr.	Total	Forest	Cerr.	Total	Forest	Cerr.	Total	Forest	Cerr.	Total	LMS	HMS	LMS	HMS	Lims	HMS	LMS	HMS
-	C02	1	897.47	92.55	990.02	897.47	92.55	99 0.02	894.33	87.32	981.65	894.33	87.32	981.6 <u>5</u>	78.7	69.4	244.77	243.91	25.24	23.81	270.01	267.72
	CH4	63	1.29	0.10	1.39	81.51	6.13	87.64	2.58	0.22	2.80	162.53	13.65	176.18	7.0	12.5	0.97	1.93	0.07	0.16	1.04	2.10
	со	7	20.52	1.7 5	22.27	143.63	12.26	155.89	25.80	2.20	28.00	180.62	15.37	195.99	12.4	13.9	8.79	11.06	0.75	0.94	9.54	12.00
	N2O	270	0.09	0.08	0.17	23.08	21.74	44.82	0.16	0.09	0.25	42.95	23.58	66.53	3.6	4.7						
	NOx	150	0.28	0.04	0.32	42.62	5.68	48.30	0.28	0.04	0.32	42.62	5.68	48.30	3.8	3.4						
	NMHC	31	-2.14	-0. 09	-2.24	-66.46	-2.94	-69.41	-1.68	- 0 .05	-1.74	-52.22	-1.61	-53.83	-5.5	-3.8						
	Total CO2-equivalent	i gas (mill	lion MT)			1122	135	1257				1271	144	1415	100.0	100.0	254.53	256.90	26.06	24.92	280.59	281.82
	C02-equivalent carbon	n (millior	a MT)			306	37	343				347	39	386								

Table 26. Greenhouse emissions from 1990 deforestation

a) IPCC 20-year values, including indirect effects, expressed as kg of CO2 gas equivalent/kg of gas (Table 25). Note:

-

49

The IPCC is currently in the process of revising its approach to deriving equivalents for each gas in terms of CO₂. A series of integrations will allow allocation of responsibility for the past emissions of each country. However, the greater radiative forcing and broader absorption spectrum of CH₄ as compared to CO₂ will undoubtedly maintain the greater relative impact of carbon in the form of methane under the revised criteria.

The choice of the 20-year horizon gives more emphasis to trace gases than does the 5% annual discount rate used by US-Environmental Protection Agency (EPA) (Lashof and Ahuja, 1990), which has been used in previous calculations of the impact of Amazonian deforestation (Fearnside, nd-a). The 5% discount rate is roughly equivalent to the 30-year horizon used by the World Bank (Arrhenius and Waltz, 1990).

The emissions of each gas under the high and low methane scenarios are shown in Table 26, together with the CO₂ carbon equivalent using the 20-year horizon global warming potentials. Gross carbon releases are also shown. The effect of trace gases raises impact from the gross carbon total of 281-282 X 10⁶ MT/year to the CO₂ equivalent total of 343-386 X 10⁶ MT/year, an increase of 62-104 X 10⁶ MT/year or 22-37%.

7. BRAZIL'S CONTRIBUTION TO GLOBAL WARMING

Global carbon emissions from deforestation are uncertain, in part because of the uncertainty associated with Brazil's large contribution to the total. One study (Houghton, 1989: 60), using the deforestation estimates of Myers (1989), estimates that Brazil contributes 0.454 GT (32.1%) of a global total of 1.398 GT of carbon released from deforestation. Using instead the comparable figure of 0.281-0.282 GT/year for gross carbon release estimated for Brazil in the present paper (Table 26), and a deforestation total of 1.402-1.413 GT/year (Tables 28-29) based on the more conservative clearing rate estimates presented in Table 27, Brazil's contribution represents 20% of the deforestation total. Deforestation in the Brazilian Amazon contributes 4.2% of the combined gross carbon total from fossil fuels and tropical deforestation. Using the fossil fuel release as the standard of comparison, as is the usual practice, Brazil's annual rate of deforestation in Amazonia represents 5.3%. Using the CO₂ equivalent carbon release of 0.343-0.386 GT (for the low and high methane scenarios), the contribution represents 4.9-5.4% of the combined deforestation and fossil fuel total or 6.5-7.3% of the global fossil fuel total (Table 30, assuming the low and high methane scenarios described here for the Brazilian Amazon apply to the non-Brazilian deforestation estimated in Tables 27-29). Tropical deforestation's contribution to total (deforestation + fossil fuel) greenhouse emissions represents 20.9-21.1% for the low and high methane scenarios in terms of gross carbon, and 24.3-26.5% in terms of CO₂-equivalent carbon (Table 30).

8. DEFORESTATION AND GREENHOUSE POLICY

Deforestation in Brazilian Amazonia already makes a significant contribution to the greenhouse effect, and continuation of deforestation trends could lead to an even greater potential

contribution to this global problem. Uncertainties concerning clearing rate, biomass and other factors do not change this basic conclusion regarding the significance of deforestation.

Brazil emits 50 X 10⁶ MT of carbon annually from burning fossil fuels at 1987 levels (Graça and Ketoff, nd; see also Flavin, 1989: 26). This contribution to the greenhouse effect is balanced against the benefits of the country's industry and transportation powered by oil and coal, all domestic use of natural gas, etc. In contrast, each year's clearing of forest and *cerrado* in the Brazilian Amazon is now contributing to the atmosphere 281-282 X 10⁶ MT of gross carbon -- over five times as much as Brazil's use of fossil fuels (Table 30). Correction for the relative impact of trace gases releases increases the global warming stemming from deforestation to 343-386 X 106 MT, or 7-8 times Brazil's fossil fuel emissions. The benefits of deforestation, however, are minimal: it leaves in its wake only destroyed rain forests and degraded cattle pastures.

The contrast between costs and benefits of biomass burning and fossil fuel combustion are also tremendous on a per-capita basis. Discussing greenhouse emissions in terms of the per-capita average for rural Amazonia as a whole does a great injustice to the poor small farmers who make up the majority of the population. This is because most of the deforestation is done by a tiny minority of large ranches. For example, a single rancher who clears 2,000 ha of forest (with an average biomass of 372 MT/ha, releasing 221-251 MT/ha of C ~ O_2 -equivalent C) is emitting as much carbon as a city of over 1 million people burning fossil fuels (calculation patterned after I.F. Brown, 1988).

Reliable data are not available on how much of the clearing is taking place on large ranches as opposed to small holdings. Even a very rough estimate is better, however, than the alternative of assuming that the 13.8 X 10³ km² of 1990 deforestation was divided evenly among the region's approximately 8 X 10⁶ rural residents. The distribution of 1990 clearing among the region's nine states (Table 2) indicates well over half in states that are dominated by large ranchers: 29% was in Mato Grosso, 35.5% in Pará (especially southern Pará where large ranchers predominate). By contrast, Rondônia -- a state that has become famous for its deforestation by small farmers -- had only 12.1% of the total, and Acre had 4%. Recognizing that predominantly small-farmer states also have large ranchers, and vice versa, an estimate of approximately 60-70% of the clearing being the work of large ranchers appears reasonable. At the time of the 1985 agricultural census, 1.7% of the rural establishments covered by the census had areas of 1000 ha or more, but these accounted for 62.3% of the total area of private property in the region (calculated from Brazil, IBGE, 1989: 297, considering half of the areas reported for Maranhão and Goiás to be within the Legal Amazon). The 1985 agricultural census information (Table 31) has been used in Table 32 for apportioning the 1990 emissions (remembering that the deforestation rate in 1990 was lower than that in 1985). Comparisons of per-capita emissions are shown for different property sizes and for the rural Amazonian population, Brazil as a whole, the United States and the world. It is apparent that the emissions from a tiny population of ranchers dominates the statistics not only for Amazonia but for Brazil as a whole.

The gulf between the costs and benefits of deforestation compared to fossil fuel use makes slowing forest loss an obvious place for Brazil to start reducing its contribution to global warming. The world's 400 X 10⁶ automobiles release 550 X 10⁶ MT of carbon annually (Flavin, 1989: 35); the 343-386 X 10⁶ MT of CO₂-equivalent carbon released by Brazil's 1990 deforestation in Amazonia is therefore equivalent to the 367 X 10³ MT reduction that could be achieved by tripling the fuel efficiency of all the cars in the world. Other nations searching for ways to best apply their funds to reduce global warming would be wise to contribute financially to helping Brazil reduce its forest loss.

Slowing forest loss is possible because the process of deforestation in Brazil is largely driven by factors that are subject to government decisions. Separate discussions have been published treating deforestation's causes in Brazil (Fearnside, 1987b), its meager benefits (Fearnside, 1985b, 1986a), heavy environmental costs (Fearnside, 1985c, 1988), and irrationality from the perspective of the long-term interests of the country (Fearnside, 1989c,d). Measures that would help slow forest loss in Brazilian Amazonia have been reviewed both from the perspective of what the Brazilian government could do (Fearnside, 1989e) and that of possible contributions from other countries (Fearnside, 1990e). It cannot be overemphasized that slowing deforestation in Brazil is in Brazil's own best interest independent of its implications for global warming: even if deforestation were beneficial from a greenhouse standpoint, Brazil would be foolish to continue clearing its Amazonian forests.

The contrast between costs and benefits of the biomass burning and the combustion of fossil fuels are also tremendous on a per capita basis. Discussing greenhouse emissions in terms of the per capita average for rural Amazonia as a whole does a great injustice to the poor small farmers who make up the majority of the population. Most of the deforestation is done by a tiny minority of large ranches. For example, a single rancher who clears 2,000 ha of forest (with an average biomass of 372 t/ha) is emitting as much carbon as a city of almost 1 million people burning fossil fuels (calculation patterned after I.F. Brown 1988).

Reliable data are not available on how much of the clearing is taking place on large ranches as opposed to small holdings. Even a very rough estimate is better, however, than the alternative of assuming that the $13.8 \times 10^3 \text{ km}^2$ of 1990 deforestation was divided evenly among the region's approximately 8×10^6 rural residents. The distribution of 1990 clearings among the region's nine states (Table 2) indicates well over half in states that are dominated by large ranchers: 29 percent was in Mato Grosso and 35.5 percent in Pará (especially southern Pará where large ranchers predominate). In contrast, Rondônia -- a state that has become famous for its deforestation by small farmers -- had only 12.1 percent of the total, and Acre had 4 percent. Recognizing that predominantly small-farmer states also have large ranchers, and vice versa, an estimate of approximately 60-70 percent of the clearing being the work of large ranchers appears reasonable. At the time of the 1985 agricultural census, 1.7 percent of the rural establishments had areas of 1000 ha or more, but these accounted for 62.3 percent of the total area of private property in the region (calculated from Brazil, IBGE 1989, 297, considering half of the areas reported for Maranhão and Goiás to be within the Legal Amazon). The 1985 agricultural census information (Table 31) has been used in Table 32 for apportioning the 1990 emissions

(remembering that the deforestation rate in 1990 was lower than that in 1985). Comparisons per capita emissions are shown for different property sizes and for the rural Amazon population, Brazil as a whole, the United States and the world. It is apparent that the emission from a tiny population of ranchers dominates the statistics not only for Amazonia but for Bra as a whole.

The gulf between the costs and benefits of deforestation compared to fossil fuel 1 makes slowing forest loss an obvious place for Brazil to start reducing its contribution to glowarming. The world's 400 x 10⁶ automobiles release 550 x 10⁶ t of carbon annually (Flat 1989, 35); the 346-376 x 10⁶ t of CO₂-equivalent carbon released by Brazil's 1990 deforestation in Amazonia is therefore equivalent to the 367 x 10³ t reduction that could be achieved tripling the fuel efficiency of all the cars in the world. Other nations searching for ways to b apply their funds to reduce global warming would be wise to contribute financially to helpi Brazil reduce its forest loss.

Country	I	Deforestation (1000 ha/yr))
	All forests (most recent estimate)	Closed forests (approximate rate)	Open forests (approximate rate
TROPICS TOTAL	12048	8828	3637
AFRICA	3131	1888.2	1242.8
Benin	67	1.0	66.0
Burundi	1	1.0	0.0
Cameroon	190	138.2	51.8
Central African Rep.	55	5.0	50.0
Congo	22	22.0	0.0
Cote d'Ivoire	510	290.0	220.0
Gabon	15	15.0	` 0.0
Gambia, the	5	2.0	3.0
Ghana	72	22.0	50.0
Liberia	46	46.0	0.0
Madagascar	156	150.0	6.0
Nigeria	400	300.0	100.0
Rwanda	5	3.0	2.0
Sierra Leone	6	6.0	0.0
Togo	12	2.0	10.0
Uganda	1199	703.0	496.0
Zaire	370	182.0	188.0
CENTRAL AMERICA	1404	963.0	32.5
Belize	9	9.0	0.0
Costa Rica	42	42.0	0.0
Cuba	2	2.0	0.0
Dominican Rep.	4	4.0	0.0
El Salvador	5	5.0	0.0
Guatemala	90	90.0	0.0
Haiti	2	2.0	0.0
Honduras	90	90.0	0.0
Jamaica	2	2.0	0.0

Table 27. Deforestation rates in countries with tropical moist forests*

Mexico ^b	700	668.0	32.5
Nicaragua	121	121.0	0.0
Panama	36	36.0	0.0
Trinidad & Tobago	1	1.0	0.0

=

(continued on following page)

Country	E	Corestation (1000 ha/yr)	
	All forests (most recent estimate)	Closed forests (approximate rate)	Open forests (approximate rate)
SOUTH AMERICA	4673	3285.3	2212.2
Bolivia	117	87.0	30.0
Brazil ^e	2380	1380.0	1824.5
Colombia	890	820.0	70.0
Ecuador	340	340.0	0.0
Guyana	3	2.0	1.0
Paraguay	450	403.3	46.7
Peru	245	125.0	120.0
Suriname	3	3.0	0.0
Venezuela	245	125.0	120.0
ASIA	2814	2666.0	148.0
India	48	48.0	0.0
Indonesia	1000	967.7	32.3
Kampuchea, Dem.	30	25.0	5.0
Lao Peoples Dem. Rep.	130	100.0	30.0
Malaysia	270	270.0	0.0
Myanmar	600	600.0	0.0
Nepal	84	84.0	0.0
Pakistan	9	7.0	2.0
Philippines	150	150.0	0.0
Singapore			,
Sri Lanka	58	58.0	0.0
Thailand	235	156.3	78.7
Vietnam	200	200.0	0.0
OCEANIA	26	25.0	1.0
Australia			
Fiji	2	2.0	0.0
Papua New Guinea	23	22.0	1.0
Solomon Islands	1	1.0	0.0

Table 27 (continued). Deforestation rates in countries with tropical moist forests

- Notes: (a) All data from World Resources Report 1991 (WRI, nd), except for those for Mexico and Brazil. Apportioning between open and closed forests is approximate, based on percentage of existing forests of each type listed in WRI report, aside for Brazil and Mexico.
 - (b) Mexico data for closed forests from Masera et al 1992. WRI (nd) gives 957.5 x 10⁶ ha/yr as closed forest rate in Mexico.
 - (c) The Brazil rate considers Amazon forests as closed and Cerrado as open (rates as used in this paper).

بر ا

٠	٠
	Ł

Table 28. Rough calculation of biomass of tropical forests presently being cleared outside of Braz	zl
--	----

Continent					Closed forests				-		Open for	rests
	Percent disturbed (a)	Biomass carbon if disturbed (MT C/ha) (b)	Biomass carbon if undisturbed (MT C/ha) (b)	Biomass carbon weighted average (MT C/ha)	Adjustments to Brown & Lugo above- ground estimates (c)	Carbon content of biomass (d)	Above- ground biomass (MT/ha)	Below- ground factor (root/ ahoot) (d)	Below- ground biomass (MT/ha)	Total biomass (MT/ha)	Biomass carbon (MT C/ha) (e)	Total biomass (MT/ha)
America	15	89	73	75	1.394	. 1	210.24	0.175	36.70	246.94	27	54
Africa	41	136	111	121	1.394	1	338.09	0.175	59.02	397.11	15	30
Asia	42	112	60	82	1.394	1	228.20	0.175	39.84	268.04	40	80

.

Sources:

(a) Used by Houghton, 1991:101, based on N. Myers, pers. comm., 1991.
(b) Used by Houghton, 1991:101, based on Brown et al., 1989 (NB: refers to above-ground live biomass for trees > 10 cm DBH in original source).
(c) Fearnside, 1992. , •.

(d) Value used for Brazil in the present study (see text).

(e) Value used by Houghton, 1991:101 based on Brown and Lugo, 1984 (NB: refers to total biomass in original source).

56

. . . .

Location		Closed	forests			Open fo		All forests		
	Rate of clearing	Biomass (above +	Emissions		Rate of	Biomass (above +	Emi	ssions		
	(1000 ha/yr)	below ground) (MT/ha)	(million MT gross carbon)	(million MT CO2- equivalent carbon)	(1000 ha/yr)	below ground) (MT/ha)	(million MT gross carbon)	(million MT CO2- equivalent carbon)	(million MT gross carbon)	(million MT CO2- equivalent carbon)
LOW METHANE										
Brazil	1382	372	255	306	1000	45	26	37	281	343
Rest of America	2868	247	351	422	420	54	13	19	364	440
Africa	1888	397	372	447	1243	30	21	30	393	477
Asia & Occania	2691	268	357	430	149	80	7	10	364	439
Total	8829		1334	1604	2812		68	96	1402	1700
high Methane										
Brazil	1382	372	257	347	1000	45	25	39	282	386
Rest of America	2868	247	354	478	420	54	13	19	367	496
Africa	1888	397	375	506	1243	30	21	30	397	536
Asia & Occana	2691	268	361	487	149	80	7	10	368	496
Total	8829		1347	1817	2812		66	98	1413	1915

.

Table 29.	Rough calculation of	global greenhouse emissions	from tropical deforestation
	HVuga curculativa vi	NOVER BICCOMPOSITION	it official delive delive

5

Ľ

REGION	Source		GROSS	S CARBON		CO2-EQUIVALENT CARBON						
		Low methane		-	nethane ario	Low m	ethane Irio	High methane				
		Million MT	% of global total	Million MT	% of global total	Million MT	% of global total	Million MT	% of global total			
BRAZIL												
	Deforestation	281	4.2	282	4.2	343	4.9	386	5.3			
	fossil fuel	50	0.7	50	0.7	50	0.7	50	0.7			
	Total	331	4.9	332	4.9	393	- 5.6	436	6.0			
WORLD								*. 101				
	Deforestation	1402	20.9	1413	21.1	1700	24.3	1915	26.5			
	fossil fuel	5300	79.1	5300	78.9	5300	75.7	5300	73.5			
	Total	6702	100.0	6713	[,] 100.0	7000	100.0	7215	100.0			

_

Table 30. Contribution of deforestation in Brazilian Amazonia to global greenhouse emissions

•

State	Numb	er of establis	hments			P	ercent of an	ea	Percer	nt of establis	shments
	< 100 ha	100- 1000 ha	>1000 ha	100- 1000 ha	>1000 ha	<100 ha	100- 1000 ha	>1000 ha	< 100 ha	100- 1000 ha	>1000 ha
Rondônia	65,469	15,581	474	2,168	1,800	34.8	35.6	29.6	80.3	19.1	0.6
Acre	21,026	13,966	323	2,527	2,417	16.6	42.6	40.8	59.5	39.5	0.9
Amazonas	107,454	8,798	557	1,818	2,462	28.3	30.5	41.3	92 .0	7.5	0.5
Roraima	2,913	2,936	574	490	1,521	6.8	22.7	70.5	45.4	45.7	8.9
Pará	215,020	36,505	2,418	6,269	12,393	20.7	26.6	52.7	84.7	14.4	1.0
Amapá	3,027	1,683	122	288	853	5.7	23.8	70.5	62.6	34.8	2.5
Maranhao (b)	252,171	11,448	1,155	5,945	3,168	14.3	55.9	·> 29.8	95.2	4.3	0.4
Goiás (Tocantins) (b)	52,659	32,270	4,684	9,867	24,238	5.0	27.5	67.5	58.8	36.0	5.2
Mato Grosso	55,403	17,331	5,575	5,047	31,699	3.2	13.3	83.5	70.7	22.1	7.1
Legal Amazon	775,142	140,517	15,882	34,418	80,551	11.1	26.6	62.3	83.2	6.0	1.7

Table 31. Land tenure distribution the Brazilian Legal Amazon in 1985 (a)

Notes: (a) Data from 1985 agricultural census: Brazil, IBGE, 1989: 297.

(b) For Maranhao and Goiás half of the properties are assumed to be in the Legal Amazon. The state of Tocantins was created from the northern half of Goiás in 1988, roughly the portion in the Legal Amazon.

ζ.

_		Low	methane scen	ario	High	methane scens	ario
Source	Population (millions)	Annual Emission (million MT CO2 equiv. C) (b)	Annual Emission per capita (MT CO2 equiv.C)	Number of people needed to equal one large rancher	Annual Emission (million MT CO2 equiv.C) (b)	Annual Emission per capita (MT CO2 equiv.C)	Number of people needed to equal one large rancher
Brazil:							
Large rancher population Amazonia (a)	0.1	213	1565.1	1	240	1761.3	1
Medium-sized rancher population of Amazonia (a)	0.5	91	190.0	8	103	213.8	8
Small farmer population of Amazonia (a)	6.7	38	5.7	273	43	6.5	273
Rural Amazonia total	8	343	51.5	30	386	48.2	37
Rest of Brazil	132	47	0.4	4396	47	0.4	4947
Brazil total	140	393	2.8	558	436	3.1	56 6
World	5300	7000	1.3	1185	7215	1.4	1294
United States	210	1060	5.0	310	1060	5.0	349

Table 32. Greenhouse impact per capita

Notes: (a) "Large ranches" are > 1,000 ha in area, "middle-sized ranches" are 100-1000 ha in area, "small farms" are < 100 ha in area. The 1990 rural population is apportioned between these categories in proportion to the number of establishments censused in 1985 (Table 31).

(b) Emissions are allocated among property classes in proportion to the area of the establishments.

NOTES

(1) Some inconsistency remains in the definition of original forest area used here (Tables 4 and 5), and that used in the deforestation estimate (Tables 1-2). The deforestation estimate used a line between forest and non-forest drawn by INPE from LANDSAT-TM 1:250,000 scale images with some reference to the RADAMBRASIL vegetation maps (but without a list of the vegetation types classified as forest and non-forest). The area so defined has not yet been measured by INPE, but a compilation by map sheet (using IBGE 1:250,000 scale maps as a geographical base) was made of the approximate proportions of forest and non-forest in each sheet. The total from this compilation is $4.0 \times 10^6 \text{ km}^2$, lower than the $4.3 \times 10^6 \text{ km}^2$ measured from the IBDF/IBGE 1.5,000,000 scale map.

The "present" vegetation is also inconsistent: the IBDF/IBGE mapping totals 3.7×10^6 km² of forest (circa 1988)(Table 5), whereas the original forest area from the same map, less the area deforested by 1988 (Table 1), yields a total of 3.9×10^6 km².

(2) Tocantins is a state created by Brazil's October 1988 constitution from the northern half of the former state of Goiás. The border between Tocantins and the present state of Goiás is an irregular line zig-zagging along the 13th parallel S. latitude, which had previously been the limit of the "Legal Amazon" in this area. The present state of Tocantins now defines the limit of Legal Amazonia here. Deforestation data from previous years have been re-interpreted to conform to the new definition, but the areas of the vegetation types have not yet been adjusted (referred to in the tables as "Tocantins/Goiás"). Of the present state of Goiás, 2875 km² lies north of 13° S. Latitude, and 7411 km² of Tocantins lies south of this parallel (Fearnside *et al.*, nd-a). Virtually none of this area was originally forested.

(3) Annual transition probability can be obtained from the mean time to transition by calculating the number of years needed for the cumulative probability of the event (transition) occurring at least once to reach 0.5, i.e., $0.5 = (1 - P)^t$, or $P = 1 - 0.5^{1/t}$, where "P" is the annual probability of transition and "t" is the mean time to transition in years.

ACKNOWLEDGMENTS

Studies on burning in Altamira were funded by National Science Foundation grants GS-422869 (1974-1976) and ATM-86-0921 (1986-1988), in Manaus by World Wildlife Fund-US grant US-331 (1983-1985), and in Manaus and Roraima by the Pew Scholars Program in Environment and Conservation and by the Fundação Banco do Brasil (Grant 10/1516-2). The author would like to thank Andrew Plantinga and Omar Masera for reviewing this report.

LITERATURE CITED

- Ahuja, D.R. 1990. Regional anthropogenic emissions of greenhouse gases. pp. 417-461
 In: Intergovernmental Panel on Climate Change (IPCC), Response Strategies Working
 Group (RSWG), Subgroup on Agriculture, Forestry and other Human Activities (AFOS).
 Proceedings of the Conference on Tropical Forestry Response Options to Global Climate
 Change. U.S. Environmental Protection Agency, Office of Policy Assessment (USEPA-OPA, PM221), Washington, DC, U.S.A. 531 pp.
- Andreae, M.O., E.V. Browell, M. Garstang, G.L. Gregory, R.C. Harriss, G.F. Hill, D.J. Jacob, M.C. Pereira, G.W. Sachse, A.W. Setzer, P.L. Silva Dias, R.W. Talbot, A.L. Torres, and S.C. Wofsy. 1988. Biomass-burning emissions and associated haze layers over Amazonia. *Journal of Geophysical Research* 93(D2): 1509-1527.
- Arrhenius, E.A. and T.W. Waltz. 1990. The greenhouse effect: Implications for economic development. World Bank Discussion Paper No. 78. International Bank for Reconstruction and Development, Washington, DC, U.S.A. 18 pp.
- Aselmann, I. and P.J. Crutzen. 1990. A global inventory of wetland distribution and seasonality, net productivity, and estimated methane emissions. pp. 441-449 In: A.F. Bouman (ed.), Soils and the Greenhouse Effect. Wiley, New York, U.S.A. 575 pp.
- Bandeira, A.G. and M.L.J. Macambira. 1988. Térmitas de Carajás, Estado do Pará, Brasil: Composição faunística, distribuição e hábito alimentar. Boletim do Museu Paraense Emílio Goeldi: Zoologia 4(2): 175-190.
- Bandeira, A.G. and M.F.P. Torres. 1985. Abundância e distribuição de invertebrados do solo em ecossistemas da Amazônia Oriental. O papel ecológico dos cupins. Boletim do Museu Paráense Emílio Goeldi: Zoologia 2(1): 13-38.
- Bogdonoff, P., R.P. Detwiler and C.A.S. Hall. 1985. Land use change and carbon exchange in the tropics: III. Structure, basic equations, and sensitivity analysis of the model. *Environmental Management* 9(4): 345-354.
- Brazil, Ministério da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal (IBDF) and Presidência da República, Instituto Brasileiro de Geografia e Estatística (IBGE). 1988. Mapa de Vegetação do Brasil. Map Scale 1:5,000,000. IBAMA, Brasília, Brazil.
- Brazil, Secretaria de Planejamento (SEPLAN), Programa Grande Carajás (PGC), Companhia de Desenvolvimento de Barcarena (CODEBAR) and Ministério do Interior, Superintendência do Desenvolvimento da Amazônia (SUDAM). 1986. Problemática do Carvão Vegetal na Área do Programa Grande Carajás. CODEBAR/SUDAM, Belém, Pará, Brazil. 117 pp.

- Brazil, Ministério das Minas e Energia, Centrais Elétricas do Brasil (ELETROBRÁS). 1987. Plano 2010: Relatório Geral. Plano Nacional de Energia Elétrica 1987/2010. (Dezembro de 1987). ELETROBRÁS, Brasília, Brazil. 269 pp.
- Brazil, Ministério das Minas e Energia, Departamento Nacional de Produção Mineral (DNPM), Projeto RADAMBRASIL. 1973-1983. Levantamento de Recursos Naturais, Vols. 1-23. DNPM, Rio de Janeiro, Brazil.
- Brown, I.F. 1988. Bacias hidrográficas. Presentation at the 2a. Semana do Ambiente. 5-9 December 1988, Piracicaba, São Paulo, Brazil.
- Brown, I.F., D.C. Nepstad, I.O. Pires, L.M. Luz and A.S. Alechandre. nd. Carbon storage and land use in extractive reserves, Acre, Brazil. (manuscript. 24 pp.)
- Brown, S. and A.E. Lugo. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. *Biotropica* 14(3): 161-187.
- Brown, S. and A.E. Lugo. 1984. Biomass of tropical forests: A new estimate based on forest volumes. *Science* 223: 1290-1293.
- Brown, S. and A.E. Lugo. 1992. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. *Interciencia* 17(1): 8-18.
- Brown, S., A.J.R. Gillespie, and A.E. Lugo. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. *Forest Science* 35(4): 881-902.
- Cofer, W.R., J.S. Levine, P.H. Riggan, D.I. Sebacher, E.L. Winstead, E.F. Shaw, J.A. Brass and V.G. Ambrosia. 1988. Trace gas emissions from a mid-latitude prescribed chaparral fire. Journal of Geophysical Research 93: 1653-1658.
- Coic, A., N. Higuchi and J. Veloso. 1991. Comportamento após exploração florestal duma floresta densa úmida na Amazônia. Unpublished report, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 23 pp.
- Collins, N.M. and T.G. Wood. 1984. Termites and atmospheric gas production. Science 224: 84-85.
- Coutinho, L.M. 1982. Ecological effects of fire in Brazilian cerrado. pp. 273-291 In: B.J. Huntley and B.H. Walker (eds.), *Ecology of Tropical Savannas*. Springer, Berlin, Germany.

- Crutzen, P.J. 1990. Biomass burning: A large factor in the photochemistry and ecology of the tropics. Paper presented at the Chapman Conference on Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. 19-23 March 1990, Williamsburg, Virginia, U.S.A.
- Crutzen, P.J. and M.O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. *Science* 250: 1669-1678.
- Crutzen, P.J., I. Aselmann and W. Seiler. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. *Tellus* 38B: 271-284.
- Crutzen, P.J., A.C. Delany, J. Greenberg, P. Haagenson, L. Heidt, R. Lueb, W. Pollock, W. Seiler, A. Wartburg and P. Zimmerman. 1985. Tropospheric chemical composition measurements in Brazil during the dry season. *Journal of Atmospheric Chemistry* 2: 233-256.
- Crutzen, P.J., A.C. Delany, J. Greenberg, P. Haagenson, L. Heidt, R. Lueb, W. Pollock, W. Seiler, A. Wartburg and P. Zimmerman. 1985. Tropospheric chemical composition measurements in Brazil during the dry season. *Journal of Atmospheric Chemistry* 2: 233-256.
- Cunningham, R.H. 1963. The effect of clearing a tropical forest soil. Journal of Soil Science 14: 334-344.
- Detwiler, R.P. 1986. Land use change and the global carbon cycle: The role of tropical soils. Biogeochemistry 2: 67-93.
- Detwiler, R.P. and C.A.S. Hall. 1988. Tropical forests and the global carbon cycle. Science 239: 42-47.
- Dickinson, R.E. and A. Henderson-Sellers. 1988. Modelling tropical deforestation: A study of GCM land-surface parameterizations. *Quarterly Journal of the Royal Meteorological Society* 114: 439-462.
- dos Santos, J.R. 1989. Estimativa da biomassa foliar das savanas brasileiras: Uma abordagem por sensoriamento remoto. pp. 190-199 In: *IV Simposio Latinamericano en Percepcion Remota, IX Reunion plenaria SELPER*, 19 al 24 de Noviembre de 1989, Bariloche, Argentina. Tomo 1. 476 pp.
- Falesi, I.C. 1976. Ecossistema de Pastagem Cultivada na Amazônia Brasileira. Centro de Pesquisa Agropecuária do Trópico εmido (CPATU), Belém, Pará, Brazil. 193 pp.
- Fearnside, P.M. 1979. Cattle yield prediction for the Transamazon Highway of Brazil. Interciencia 4(4): 220-225.

- Fearnside, P.M. 1980. The effects of cattle pasture on soil fertility in the Brazilian Amazon: Consequences for beef production sustainability. *Tropical Ecology* 21(1): 125-137.
- Fearnside, P.M. 1984. Land clearing behaviour in small farmer settlement schemes in the Brazilian Amazon and its relation to human carrying capacity. pp. 255-271 In: A.C. Chadwick and S.L. Sutton (eds.), *Tropical Rain Forest: The Leeds Symposium*. Leeds Philosophical and Literary Society, Leeds, U.K. 335 pp.
- Fearnside, P.M. 1985a. Brazil's Amazon forest and the global carbon problem, Interciencia, 10(4): 179-186.
- Fearnside, P.M. 1985b. Agriculture in Amazonia. pp. 393-418 In: G.T. Prance and T.E. Lovejoy (eds.), Key Environments: Amazonia. Pergamon Press, Oxford, U.K. 442 pp.
- Fearnside, P.M. 1985c. Environmental change and deforestation in the Brazilian Amazon. pp. 70-89 In: J. Hemming (ed.), Change in the Amazon Basin: Man's Impact on Forests and Rivers. Manchester University Press, Manchester, U.K. 222 pp.
- Fearnside, P.M. 1986a. Human Carrying Capacity of the Brazilian Rainforest, Columbia University Press, New York, U.S.A. 293 pp.
- Fearnside, P.M. 1986b. Brazil's Amazon forest and the global carbon problem: Reply to Lugo and Brown. *Interciencia* 11(2): 58-64.
- Fearnside, P.M. 1987a. Summary of progress in quantifying the potential contribution of Amazonian deforestation to the global carbon problem. pp. 75-82 In: D. Athié, T.E. Lovejoy and P. de M. Oyens (eds.), Proceedings of the Workshop on Biogeochemistry of Tropical Rain Forests: Problems for Research. Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, São Paulo, Brazil. 85 pp.
- Fearnside, P.M. 1987b. Causes of deforestation in the Brazilian Amazon. pp. 37-53 In: R.F. Dickinson (ed.), *The Geophysiology of Amazonia: Vegetation and Climate Interactions*. John Wiley & Sons, New York, U.S.A. 526 pp.
- Fearnside, P.M. 1988. An ecological analysis of predominant land uses in the Brazilian Amazon. The Environmentalist 8(4): 281-300.
- Fearnside, P.M. 1989a. Extent and causes of tropical forest destruction. Testimony to the German Bundestag Study Commission on "Preventative Measures to Protect the Earth's Atmosphere" Bonn, 2-3 May 1989. (manuscript, 15 pp.)
- Fearnside, P.M. 1989b. Brazil's Balbina Dam: Environment versus the legacy of the pharaohs in Amazonia. *Environmental Management* 13(4): 401-423.

- Fearnside, P.M. 1989c. Extractive reserves in Brazilian Amazonia: Opportunity to maintain tropical rain forest under sustainable use. *BioScience* 39(6): 387-393.
- Fearnside, P.M. 1989d. Forest management in Amazonia: The need for new criteria in evaluating development options. *Forest Ecology and Management* 27(1): 61-79.
- Fearnside, P.M. 1989e. A prescription for slowing deforestation in Amazonia. *Environment* 31(4): 16-20, 39-40.
- Fearnside, P.M. 1989f. A Ocupação Humana de Rondônia: Impactos, Limites e Planejamento. Programa POLONOROESTE Relatório de Pesquisa No. 5. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil. 76 pp.
- Fearnside, P.M. 1990a. The rate and extent of deforestation in Brazilian Amazonia. Environmental Conservation 17(3): 213-216.
- Fearnside, P.M. 1990b. Rondônia: Estradas que levam à devastação. Ciência Hoje. 11(61): 46-52.
- Fearnside, P.M. 1990c. Deforestation in Brazilian Amazonia. pp. 211-238 In: G.M. Woodwell (ed.), *The Earth in Transition: Patterns and Processes of Biotic Impoverishment*. Cambridge University Press, New York, U.S.A. 530 pp.
- Fearnside, P.M. 1990d. Fire in the tropical rain forest of the Amazon Basin. pp. 106-116 In: J.G. Goldammer (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges. Springer-Verlag, Heidelberg, Germany. 497 pp.
- Fearnside, P.M. 1990e. Practical targets for sustainable development in Amazonia. pp. 167-174 In: N. Polunin and J. Burnett (eds.), *Maintenance of the Biosphere: Proceedings* of the Third International Conference on the Environmental Future. Edinburgh University Press, Edinburgh, U.K. 224 pp.
- Fearnside, P.M. 1991. Greenhouse gas contributions from deforestation in Brazilian Amazonia.
 pp. 92-105 In: J.S. Levine (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Boston, Massachusetts, U.S.A. 640 pp.
- Fearnside, P.M. 1992. Forest biomass in Brazilian Amazonia: comments on the estimate by Brown and Lugo. Interciencia 17(1): 19-27.
- Fearnside, P.M. nd-a. Deforestation in Brazilian Amazonia as a source of greenhouse gases.
 In: K. Ramakrishna and G.M. Woodwell (eds.), Global Warming and Sustainable Development: Perspectives from Developing Countries. Universidade de São Paulo/Woods Hole Research Center, Woods Hole, Massachusetts, U.S.A. (forthcoming).

- Fearnside, P.M. nd-b. Amazonian deforestation and global warming: The effect of replacement vegetation on greenhouse emissions. (in preparation).
- Fearnside, P.M., L.G. Meira Filho, and A.T. Tardin. nd-a. Deforestation rate in Brazilian Amazonia. (in preparation).
- Fearnside, P.M. and N.B. Bliss. nd. Biomass of Brazil's Amazon forest: An improved estimate for assessing the greenhouse impact of deforestation. (in preparation).
- Fearnside, P.M. and J. Ferraz. nd. Identifying areas of biological importance in Brazilian Amazonia. In: G.T. Prance, T.E. Lovejoy, A.B. Rylands, A.A. dos Santos and C. Miller (eds.), Workshop 90: Priority Areas for Conservation in Amazonia. Smithsonian Institution Press, Washington, DC, U.S.A. (forthcoming).
- Fearnside, P.M., M.M. Keller, N. Leal Filho and P.M. Fernandes. nd-b. Rainforest burning and the global carbon budget: Biomass, combustion efficiency and charcoal formation in the Brazilian Amazon. (in preparation).
- Fearnside, P.M., N. Leal Filho, F.J.A. Rodrigues, P.M.L.A. Graça and J.M. Robinson. nd-c. Tropical forest burning in Brazilian Amazonia: Measurements of biomass, combustion efficiency and charcoal formation at Altamira, Pará (in preparation).
- Fearnside, P.M., N. Leal Filho, P.M.L.A. Graça, G.L. Ferreira, R.A. Custodio and F.J.A. Rodrigues. nd-d. Pasture biomass and productivity in Brazilian Amazonia (in preparation).
- Fearnside, P.M., R.I. Barbosa and P.M.L.A. Graça. nd-e. Burning of secondary forest in Amazonia: Biomass, combustion efficiency and charcoal formation during land preparation for agriculture in Roraima, Brazil. (in preparation).
- Flavin, C. 1989. Slowing global warming: A worldwide strategy. Worldwatch Paper 91. Worldwatch Institute, Washington, DC, U.S.A. 94 pp.
- Fraser, P.J., R.A. Rasmussen, J.W. Creffield, J.R. French and M.A.K. Khalil. 1986. Termites and global methane -- another assessment. Journal of Atmospheric Chemistry 4: 295-310.
- Goreau, T.J. and W.Z. de Mello. 1987. Effects of deforestation on sources and sinks of atmospheric carbon dioxide, nitrous oxide, and methane from central Amazonian soils and biota during the dry season: A preliminary study. pp. 51-66 In: D. Athié, T.E. Lovejoy and P. de M. Oyens (eds.), Proceedings of the Workshop on Biogeochemistry of Tropical Rain Forests: Problems for Research. Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, São Paulo, Brazil. 85 pp.

- Goudriaan, J. and P. Ketner. 1984. A simulation study for the global carbon cycle, including man's impact on the biosphere. *Climatic Change* 6:167-192.
- Graça, G.M.G. and A.N. Ketoff. nd. Carbon dioxide savings in Brazil: The importance of a small contribution. (manuscript, 15 pp.)
- Greenberg, J.P., P.R. Zimmerman, L. Heidt and W. Pollock. 1984. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil. Journal of Geophysical Research 89(D1): 1350-1354.
- Hao, W.M., M.H. Liu and P.J. Crutzen. 1990. Estimates of annual and regional releases of CO₂ and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics for the period 1975-1980. pp. 440-462 In: J.G. Goldammer (ed.), *Fire in the Tropical Biota: Ecosystem Processes and Global Challenges*. Springer-Verlag, Heidelberg, Germany. 497 pp.
- Hecht, S.B. 1981. Deforestation in the Amazon Basin: Magnitude, dynamics, and soil resource effects. *Studies in Third World Societies* No. 13:61-108.
- Heinsdijk, D. 1985a. Report to the Government of Brazil on a Forest Inventory in the Amazon Valley (Part Three) (Region between Rio Tapajós and Rio Madeira), FAO Report No. 969, Project No. BRA/FO, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 83 pp.
- Heinsdijk, D. 1958b. Report to the Government of Brazil on a Forest Inventory in the Amazon Valley (Part Four) (Region between Rio Tocantins and Rios Guamá and Capim), FAO Report No. 992, Project No. BRA/FO, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 72 pp.
- Heinsdijk, D. 1958c. Report to the Government of Brazil on a Forestry Inventory in the Amazon Valley (Part Two) (Region between Rio Xingú and Rio Tapajós), FAO Report No. 949, Project No. BRA/FO, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 94 pp.
- Houghton, J.T., G.J. Jenkins and J.J. Ephraums (eds.). 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, U.K. 365 pp.
- Houghton, R.A. 1989. Emissions of greenhouse gases. pp. 53-62 In: N. Myers. Deforestation Rates in Tropical Forests and their Climatic Implications. Friends of the Earth, London, U.K. 116 pp.
- Houghton, R.A. 1991. Tropical deforestation and atmospheric carbon dioxide. Climatic Change 19(1-2): 99-118.

- Intergovernmental Panel on Climate Change (IPCC), Working Group III. 1990. Formulation of Response Strategies. IPCC, Paris, France.
- Jeffers, J.N.R. 1978. An Introduction to Systems Analysis: With Ecological Applications. Arnold, London, U.K. 198 pp.
- Jordan, C.T. and C. Uhl. 1978. Biomass of a "tierra firme" forest of the Amazon Basin. Oecologia Plantarum 13(4):387-400.
- Junk W.J. and J.A.S. de Mello. 1987. Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira. pp. 367-385 In: G. Kohlhepp and A. Schrader (eds.), Homem e Natureza na Amazônia. Tübinger Geographische Studien 95 (Tübinger Beiträge zur Geographischen Lateinamerika-Forschung 3). Geographisches Institut, Universität Tübingen, Tübingen, Germany. 507 pp.
- Kaplan, W.A., S.C. Wofsy, M. Keller and J.M. da Costa. 1988. Emission of NO and deposition of O₃ in a tropical forest system. Journal of Geophysical Research 93:1389-1395.
- Kaufman, Y.J., A.W. Setzer, C. Justice, C.J. Tucker, M.G. Pereira and I. Fung. 1990.
 Remote sensing of biomass burning in the tropics. pp. 371-399 In: J.G. Goldammer (ed.), *Fire in the Tropical Biota: Ecosystem Processes and Global Challenges*. Springer-Verlag, Heidelberg, Germany. 497 pp.
- Keller, M., D.J. Jacob, S.C. Wofsy and R.C. Harriss. 1991. Effects of tropical deforestation on global and regional atmospheric chemistry. *Climatic Change* 19(1-2):139-158.
- Keller, M., W.A. Kaplan and S.C. Wofsy. 1986. Emissions of N₂O, CH₄ and CO₂ from tropical forest soils. Journal of Geophysical Research 91:11, 791-11, 802.
- Klinge, H., and W.A. Rodrigues. 1973. Biomass estimation in a central Amazonian rain forest. Acta Cientifica Venezolana 24:225-237.
- Klinge, H., W.A. Rodrigues, E. Brunig and E.J. Fittkau. 1975. Biomass and structure in a Central Amazonian rain forest. pp.115-122 In: F. Golley and E. Medina (eds.), *Tropical Ecological Systems: Trends in Terrestrial and Aquatic Research*. Springer Verlag, New York, U.S.A. 398 pp.
- Lescure, J.P., H. Puig, B. Riera, D. Leclerc, A. Beekman and A. Beneteau. 1983. La phytomasse épigée d'une forêt dense en Guyane français. Acta Oecologica/Oecologia Generalis 4(3):237-251.
- Lugo, A.E., M.M. Sanchez and S. Brown. 1986. Land use and organic carbon content of some subtropical soils. *Plant and Soil* 96:185-196.

- Luizão, F., P. Matson, G. Livingston, R. Luizão and P. Vitousek. 1989. Nitrous oxide flux following tropical land clearing. *Global Biogeochemical Cycles* 3: 281-285.
- Martinelli, L.A., R.L. Victoria, M.Z. Moreira, G. Arruda Jr., I.F. Brown, C.A.C. Ferreira, L.F. Coelho, R.P. Lima, and W.W. Thomas. 1988. Implantação de parcelas para monitoreamento de dinâmica florestal na área de proteção ambiental, UHE Samuel, Rondônia: Relatório preliminar. Unpublished report, Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, São Paulo, Brazil. 72 pp.
- Masera, O., M.J. Ordóñez and R. Dirzo. nd. Carbon emissions from deforestation in Mexico: Current situation and long-term scenarios. Report # LBL-32665, International Energy Studies Group, Energy and Environment Division, Lawrence, Berkeley Laboratory.
- Muzio, L.J. and J.C. Kramlich. 1988. An artifact in the measurement of N₂O from combustion sources. *Geophysical Research Letters* 15:1369-1372.
- Myers, N. 1989. Deforestation Rates in Tropical Forests and their Climatic Implications. Friends of the Earth, London, U.K. 116 pp.
- Myers, N. 1990. Tropical forests. pp.372-399 In: J. Leggett (ed.), Global Warming: the Greenpeace Report. Oxford University Press, Oxford, U.K. 554 pp.
- Myers, N. 1991. Tropial forests: Present status and future outlook. *Climatic Change* 19(1-2): 3-32.
- Nepstad, D.C. 1989. Forest regrowth on abandoned pastures in Eastern Amazonia: Limitations to tree seedling survival and growth. Ph.D. dissertation. Yale University, New Haven, Connecticut, U.S.A. 234 pp.
- Nye, P.H. and D.J. Greenland. 1960. The Soil Under Shifting Cultivation. Technical Communication No. 51, Commonwealth Agricultural Bureaux of Soils, Harpenden, U.K. 156 pp.
- Post, W.M., W.R. Emanuel, P.J. Zinke and A.G. Strangenberger. 1982. Soil carbon pools and world life zones. *Nature* 298:156-159.
- Prance, G.T., W.A. Rodrigues and M.F. da Silva. 1976. Inventário florestal de uma hectare de mata de terra firme km 30 Estrada Manaus-Itacoatiara. Acta Amazonica 6:9-35.
- Rasmussen, R.A. and M.A.K. Khalil. 1983. Global production of methane by termites. Nature 301:700-702.
- Rasmussen, R.A. and M.A.K. Khalil. 1988. Isoprene over the Amazon Basin. Journal of Geophysical Research 93:1417-1421.

- Reid, Collins and Associates Limited. 1977. Jari Hog Fuel Study: Investigation of Moisture Content, Specific Gravity, Rate of Drying and other related properties of Indigenous Hardwood Species at Jari, Brazil. Progress Report, Dry Season Sampling and Results. Unpublished report, Vancouver, British Columbia, Canada. 63 pp.
- Revilla Cardenas, J.D., F.L Kahn and J.L. Guillaumet. 1982. Estimativa da Fitomassa do Reservatório da UHE de Tucuruí. pp.1-11 In: Brazil, Presidência da República, Ministério das Minas e Energia, Centrais Eletricas do Norte S.A. (ELETRONORTE) and Brazil, Secretaria do Planejamento, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Pesquisas da Amazônia (SEPLAN-CNPq-INPA). Projeto Tucuruí, Relatório Semestral Jan.-Jun. 1982, Vol. 2: Limnologia, Macrófitas, Fitomassa, Degradação de Fitomassa, Doenças Endêmicas, Solos. INPA, Manaus, Brazil. 32 pp.
- Revilla Cardenas, J.D. 1986. Estudos de ecologia e controle ambiental na região do reservatório da UHE de Samuel. convênio: ELN/MCT/CNPQ/INPA de 01.07.82.
 Relatório Setorial, Segmento: Estimativa da Fitomassa. Período julho-dezembro 1986. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 194 pp.
- Revilla Cardenas, J.D. 1987. Relatório: Levantamento e Análise da Fitomassa da UHE de Kararaô, Rio Xingú. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 181 pp.
- Revilla Cardenas, J.D. 1988. Relatório: Levantamento e Análise da Fitomassa da UHE de Babaquara, Rio Xingú. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 277 pp.
- Revilla Cardenas, J., F.L. Kahn and J.L. Guillamet. 1982. Estimativa da fitomassa do reservatório da UHE de Tucuruí. pp.1-11 In: Brazil, Centrais Elétricas do Norte do Brasil (ELETRONORTE) and Instituto Nacional de Pesquisas da Amazônia (INPA). Projeto Tucuruí, Relatório Semestral Jan.-Jun. 1982, Vol. 2: Limnologia, Macrófitas, Fitomassa, Degradação da Fitomassa, Doenças Endêmicas, Solos. INPA, Manaus, Amazonas, Brazil. 32 pp.
- Robinson, J.M. 1991. Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing 12(1):3-24.
- Russell, C.E. 1983. Nutrient cycling and productivity of native and plantation forests at Jari Florestal, Pará, Brazil. Ph.D. dissertation in Ecology, University of Georgia, Athens, Georgia, U.S.A. 133 pp.

- Luizão, F., P. Matson, G. Livingston, R. Luizão and P. Vitousek. 1989. Nitrous oxide flux following tropical land clearing. *Global Biogeochemical Cycles* 3: 281-285.
- Martinelli, L.A., R.L. Victoria, M.Z. Moreira, G. Arruda Jr., I.F. Brown, C.A.C. Ferreira, L.F. Coelho, R.P. Lima, and W.W. Thomas. 1988. Implantação de parcelas para monitoreamento de dinâmica florestal na área de proteção ambiental, UHE Samuel, Rondônia: Relatório preliminar. Unpublished report, Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, São Paulo, Brazil. 72 pp.
- Masera, O., M.J. Ordóñez and R. Dirzo. nd. Carbon emissions from deforestation in Mexico: Current situation and long-term scenarios. Report # LBL-32665, International Energy Studies Group, Energy and Environment Division, Lawrence, Berkeley Laboratory.
- Muzio, L.J. and J.C. Kramlich. 1988. An artifact in the measurement of N₂O from combustion sources. *Geophysical Research Letters* 15:1369-1372.
- Myers, N. 1989. Deforestation Rates in Tropical Forests and their Climatic Implications. Friends of the Earth, London, U.K. 116 pp.
- Myers, N. 1990. Tropical forests. pp.372-399 In: J. Leggett (ed.), Global Warming: the Greenpeace Report. Oxford University Press, Oxford, U.K. 554 pp.
- Myers, N. 1991. Tropial forests: Present status and future outlook. Climatic Change 19(1-2): 3-32.
- Nepstad, D.C. 1989. Forest regrowth on abandoned pastures in Eastern Amazonia: Limitations to tree seedling survival and growth. Ph.D. dissertation. Yale University, New Haven, Connecticut, U.S.A. 234 pp.
- Nye, P.H. and D.J. Greenland. 1960. The Soil Under Shifting Cultivation. Technical Communication No. 51, Commonwealth Agricultural Bureaux of Soils, Harpenden, U.K. 156 pp.
- Post, W.M., W.R. Emanuel, P.J. Zinke and A.G. Strangenberger. 1982. Soil carbon pools and world life zones. *Nature* 298:156-159.
- Prance, G.T., W.A. Rodrigues and M.F. da Silva. 1976. Inventário florestal de uma hectare de mata de terra firme km 30 Estrada Manaus-Itacoatiara. Acta Amazonica 6:9-35.
- Rasmussen, R.A. and M.A.K. Khalil. 1983. Global production of methane by termites. Nature 301:700-702.
- Rasmussen, R.A. and M.A.K. Khalil. 1988. Isoprene over the Amazon Basin. Journal of Geophysical Research 93:1417-1421.

- Reid, Collins and Associates Limited. 1977. Jari Hog Fuel Study: Investigation of Moisture Content, Specific Gravity, Rate of Drying and other related properties of Indigenous Hardwood Species at Jari, Brazil. Progress Report, Dry Season Sampling and Results. Unpublished report, Vancouver, British Columbia, Canada. 63 pp.
- Revilla Cardenas, J.D., F.L Kahn and J.L. Guillaumet. 1982. Estimativa da Fitomassa do Reservatório da UHE de Tucuruí. pp.1-11 In: Brazil, Presidência da República, Ministério das Minas e Energia, Centrais Eletricas do Norte S.A. (ELETRONORTE) and Brazil, Secretaria do Planejamento, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Pesquisas da Amazônia (SEPLAN-CNPq-INPA). Projeto Tucuruí, Relatório Semestral Jan.-Jun. 1982, Vol. 2: Limnologia, Macrófitas, Fitomassa, Degradação de Fitomassa, Doenças Endêmicas, Solos. INPA, Manaus, Brazil. 32 pp.
- Revilla Cardenas, J.D. 1986. Estudos de ecologia e controle ambiental na região do reservatório da UHE de Samuel. convênio: ELN/MCT/CNPQ/INPA de 01.07.82.
 Relatório Setorial, Segmento: Estimativa da Fitomassa. Período julho-dezembro 1986. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 194 pp.
- Revilla Cardenas, J.D. 1987. Relatório: Levantamento e Análise da Fitomassa da UHE de Kararaô, Rio Xingú. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 181 pp.
- Revilla Cardenas, J.D. 1988. Relatório: Levantamento e Análise da Fitomassa da UHE de Babaquara, Rio Xingú. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. 277 pp.
- kevilla Cardenas, J., F.L. Kahn and J.L. Guillamet. 1982. Estimativa da fitomassa do reservatório da UHE de Tucuruí. pp.1-11 In: Brazil, Centrais Elétricas do Norte do Brasil (ELETRONORTE) and Instituto Nacional de Pesquisas da Amazônia (INPA). Projeto Tucuruí, Relatório Semestral Jan.-Jun. 1982, Vol. 2: Limnologia, Macrófitas, Fitomassa, Degradação da Fitomassa, Doenças Endêmicas, Solos. INPA, Manaus, Amazonas, Brazil. 32 pp.
- Lobinson, J.M. 1991. Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing 12(1):3-24.
- Lussell, C.E. 1983. Nutrient cycling and productivity of native and plantation forests at Jari Florestal, Pará, Brazil. Ph.D. dissertation in Ecology, University of Georgia, Athens, Georgia, U.S.A. 133 pp.

- Saldarriaga, J.G., D.C. West and M.L. Tharp. 1986. Forest Succession in the Upper Rio Negro of Colombia and Venezuela. Oak Ridge National Laboratory, Environmental Sciences Publication No. 2694, ORNL/TM-9712. National Technical Information Service, Springfield, Virginia, U.S.A. 164 pp.
- Seiler, W. and P.J. Crutzen. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. *Climatic Change* 2:207-247.
- Seiler, W., R. Conrad and D. Scharffe. 1984. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. Journal of Atmospheric Chemistry 1:171-186.
- Setzer, A.W. and M.C. Pereira. 1990. Relatório de Atividades do Projeto "Sensoriamento de Queimadas por Satélite SEQUE" Ano 1988. (manuscript, 56 pp.)
- Setzer, A.W. and M.C. Pereira. 1991. Amazonia biomass burning in 1987 and an estimate of their tropospheric emissions. *Ambio* 20(1):19-22.
- Setzer, A.W., M.C. Pereira, A.C. Pereira Júnior and S.A.O. Almeida. 1988. Relatório de Atividades do Projeto IBDF-INPE "SEQE" Ano 1987. Instituto de Pesquisas Espaciais (INPE), Pub. No. INPE-4534-RPE/565. INPE, São José dos Campos, São Paulo, Brazil. 48 pp.
- Shine, K.P., R.G. Derwent, D.J. Wuebbles and J-J. Morcrette. 1990. Radiative forcing of climate. pp.41-68 In: Houghton, J.T., G.J. Jenkins and J.J. Ephraums (eds.), Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, U.K. 365 pp.
- Shukla, J., C. Nobre and P. Sellers. 1990. Amazon deforestation and climate change. Science 247: 1322-1325.
- Thompson, A.M. and R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH₄, and OH. Journal of Geophysical Research 91(D10): 10,853-10,864.
- Uhl, C., R. Buschbacher and E.A.S. Serrão. 1988. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. *Journal of Ecology* 76:663-681.
- Uhl, C. and J. Saldarriaga. nd. The disappearance of wood mass following slash and burn agriculture in the Venezuelan Amazon. (manuscript).

- United Nations Educational Scientific and Cultural Programme (UNESCO)/United Nations Environment Programme (UNEP)/Food and Agricultural Organization of the United Nations (FAO). 1978. Tropical Forest Ecosystems: A State of Knowledge Report. UNESCO, Paris, France.
- Vermeer, D.E. 1970. Population pressure and crop rotational changes among the Tiv of Nigeria. Annals of the Association of American Geographers 60:299-314.
- Ward, D.E. 1986. Field scale measurements of emission from open fires. Technical paper presented at the Defense Nuclear Agency Global Effects Review, Defense Nuclear Agency, Washington, D.C., U.S.A.
- Ward, D.E. and C.C. Hardy. 1984. Advances in the characterization and control of emissions from prescribed fires. Paper presented at the 77th annual meeting of the Air Pollution Control Association, San Francisco, California, U.S.A.
- Wassmann, R. and U.G. Thein. 1989. Spatial and seasonal variation of methane emission from an Amazon floodplain lake. Paper presented at the Workshop on "Cycling of Reduced Gases in the Hydrosphere," SIL Congress, Munich, Germany, 17 August 1989. (manuscript. 8 pp.)
- Wood, T.G., R.A. Johnson and C. Ohiagu. 1977. Populations of termites (Isoptera) in natural and agricultural ecosystems in southern Guinea savanna near Mokwa, Nigeria. pp.139-148
 In: F. Malaisse (ed.), Structure, Fonctionnement et Amenagement d'Ecosystemes Tropicaux. (Geo-Eco-Trop Vol. 1, No. 2). Faculté des Sciences, Université Nationale du Zaïre, Lubumbashi, Zaïre. 334 pp.
- World Resources Institute (WRI). 1990. World Resources Report 1990-91. World Resources Institute, Washington, DC, U.S.A.
- World Resources Institute (WRI). nd. World Resources Report 1992-93. World Resources Institute, Washington, DC, U.S.A. (forthcoming).
- Zimmerman, P.R., J.P. Greenberg and J.P.E.C. Darlington. 1984. Termites and atmospheric gas production. *Science* 224:86.
- Zimmerman, P.R., J.P. Greenberg, S.O. Wandiga and P.J. Crutzen. 1982. Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. *Science* 218:563-565.