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Over three-fourths of Brazil’s greenhouse gas (GHG) emissions originate from

land-use/cover change (LUCC). Alarming rates of forest loss in the Amazon region gained

international attention in the past, but deforestation declined substantially since 2004

(although the rate has trended upwards since 2012). This result conforms to the GHG

emission reduction targets set by theNational Climate Change Plan, originally divided into

three phases: 2006–2009; 2010–2013; and 2014–2017. According to the plan, emission

reductions are measured against a deforestation baseline, initially corresponding to

the average forest loss observed from 1996 to 2005 (reference period). We used an

artificial neural network (ANN) model to spatialize the plan’s original three-phase baseline

and compare (i) the simulated carbon emissions from the baseline scenario to (ii) the

emissions from observed deforestation during 2006–2017. Baseline spatialization was

performed at the state level and informed by the 2000–2004 deforestation patterns in

each state, resulting in nine state-specific calibrated ANNs. Simulated (baseline) and

observed deforestation were compared to five biomass-density maps in order to estimate

Brazil’s GHG emission reductions. Our results indicate that forest loss during the study

period was 62,321 km2 lower than the baseline and associated with 1.5 ± 0.4 Pg

of avoided CO2 emissions to the atmosphere. Virtually all emission reductions (93%)

occurred in the states of Mato Grosso (74%) and Rondônia (19%). In contrast, Roraima,

Amazonas, and Amapá states increased GHG emissions by 44.8, 36.7, and 14.7 Tg

CO2, respectively. Lastly, we discuss the issue of attribution of deforestation reductions

for results-based payments (REDD+) and the emission reduction certificates issued by

the Amazon Fund.

Keywords: REDD+, greenhouse gas emission, land-use/cover change, carbon offset, artificial neural network

INTRODUCTION

Sixty percent of the Amazon rainforest is located in Brazil. Besides holding high biodiversity levels,
the forest plays a central role in water cycling and climate regulation (Nobre et al., 2016; Exbrayat
et al., 2017; Khanna et al., 2017), and stores over 117 Pg of carbon (equivalent to 429 Pg of CO2) in
aboveground woody vegetation alone across tropical South America (Baccini et al., 2012). Hence,
conservation of the Amazon is of paramount importance to the success of global efforts to mitigate
climate change like the Paris Agreement (Gullison et al., 2007; Rochedo et al., 2018). Given that 78%
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of the Brazilian greenhouse-gas (GHG) emissions originate from
land-use/cover change (LUCC), of which two-thirds take place
in the Amazon region (Brazil, 2014), protection of the rainforest
has become the central component of Brazil’s National Climate
Change Plan announced in 2008 (Brazil, 2008) and revised
in 2010 (Brazil, 2013a). In this study, we evaluate the plan’s
original three-phase GHG emission reduction targets for the
2006–2017 period by spatializing the plan’s baseline deforestation
and comparing it to the observed deforestation in Amazonia.
We provide spatially-explicit estimates of the avoided forest loss
and carbon emissions in each state by considering the changes in
the deforestation patterns after 2004, when a major conservation
reform was initiated in the country (Brazil, 2013b).

Historically, Brazil is among the tropical countries with the
highest rates of forest loss, but annual deforestation declined
substantially from 2004 to 2012 (Figure 1). Many factors were
allegedly responsible for this outcome, e.g., shifts in commodity
prices and currency exchange rates, as well as recent private and
public conservation initiatives, in particular, the government’s
Action Plan for the Prevention and Control of Deforestation in
the Legal Amazon (PPCDAm; Hargrave and Kis-Katos, 2013;
Arima et al., 2014; Assunção et al., 2015; Börner et al., 2015).
The PPCDAm, introduced in mid-2004, supported a series of
integrated conservation activities divided into three thematic
areas: (1) territorial planning and land tenure, including the
creation of protected areas; (2) improved monitoring and law
enforcement; and (3) incentives for the sustainable use of natural
resources (Brazil, 2013b). The 2004–2007 period after the launch
of the PPCDAm was characterized by declines in soy and beef
prices and by the increase in the value of the Brazilian real
against the US dollar by over 50%, making commodity exports
much less profitable because export returns are received in
dollars while all expenses are in Brazilian currency (Fearnside,
2017). Commodity prices recovered from 2008 onwards while
deforestation rates continued to decline through 2012, showing
the effects of the environmental governance reform more clearly
during this period (Hargrave and Kis-Katos, 2013; Assunção
et al., 2015).

Among themost relevant activities promoted by the PPCDAm
were: (1) the development of the DETER product (a satellite-
based, early-warning system for detection of deforestation) by
the National Institute for Space Research (INPE; Finer et al.,
2018), which assisted law-enforcement actions on the ground
(Arima et al., 2014); (2) the 2008 “blacklisting” of Amazonian
municipalities with the highest levels of deforestation, which
blocked access to public rural credit and legal deforestation
permits in these municipalities (Cisneros et al., 2015); (3)
the 2008 Resolution No. 3545 from the Brazilian Central
Bank/National Monetary Council that blocked loans from
public banks to landowners who were in nonconformance with
environmental and rural regulations, and; (4) the 2008 Federal
Decree No. 6514, which strengthened the 1997 Environmental
Crimes Law and, consequently, the impacts of environmental
fines and embargoes (Börner et al., 2015; Fearnside, 2017).
Other important PPCDAm activities were the promotion of the
Rural Environmental Registry (CAR) after 2012, leading to the
construction of a national, spatially-explicit database of virtually

all farms in the country, and the current Terra Legal program,
which promotes land-tenure regularization in the Amazonian
region (IPEA-GIZ-CEPAL, 2011; Duchelle et al., 2014; Azevedo
et al., 2017). The PPCDAm also shaped the State-Level Plans for
the Prevention and Control of Deforestation, the implementation
of which started after 2008 (Brazil, 2013b). Still, since many of the
reportedly most effective conservation measures only came into
effect from 2008 onwards, the decline from 2004 through 2007
(≈70% of the total) cannot be attributed to these measures.

In addition, a controversial revision of the national Forest
Code in 2012 granted amnesty to nearly 30M ha illegally
deforested prior to 2008 (Soares-Filho et al., 2014). According to
INPE’s data, from 2012 onwards deforestation trended upwards,
reaching 7,900 km2 year−1 in 2018, 73% above the low point
of 4,571 km2 year−1 in 2012, although still 72% below the
high mark of 27,772 km2 year−1 in 2004. Moreover, Brazil’s
change of presidential administration in January 2019 has
been accompanied by a significant weakening of environmental
agencies and recent spikes in deforestation rates (Escobar, 2018;
Tollefson, 2018; Abessa et al., 2019).

At the private level, two voluntary supply-chain initiatives to
reduce deforestation were announced in response to pressure
from non-governmental organizations and civil society, namely
the Soy Moratorium of 2006 and the Beef Moratorium (or “Cattle
Agreements”) of 2008 (Gibbs et al., 2015, 2016). Major soybean
and beef traders who signed the moratoria committed not to
purchase soybean or beef from recently deforested Amazonian
areas. Nevertheless, rigorous impact evaluations suggest that the
conservation outcomes associated with these interventions may
have been much lower than initially conceived (Alix-Garcia and
Gibbs, 2017; Klingler et al., 2018; Svahn and Brunner, 2018).

At the international level, 2005 marked the beginning of a
new phase of negotiations on the role of avoided deforestation
activities as recognized climate mitigation strategies at the
11th Conference of Parties (COP 11) to the United Nations
Framework Convention on Climate Change (UNFCCC;
Thompson et al., 2011). In 2007, REDD+ (Reducing Emissions
from Deforestation and Forest Degradation in developing
countries, and the role of conservation, sustainable forest
management of forests, and enhancement of forest carbon
stocks) activities were included in the Bali Action Plan (COP
13), in which parties were invited to voluntarily reduce
emissions from deforestation and forest degradation (UN-
REDD, 2015). The scope of REDD+ was defined in 2010
(COP 16) and procedures for countries to have GHG emission
reductions from REDD+ activities recognized for results-based
payments were set in 2013 (COP 19). Lastly, the 2015 Paris
Agreement, formulated at COP 21, reinforced REDD+ as a key
component of future global climate change mitigation efforts
(UNFCCC, 2015).

Brazil announced its National Climate Change Plan in 2008,
after most of the decline in deforestation rates had already
occurred. This was a significant advance since Brazil’s previous
long resistance to any commitment to lower deforestation or
emissions had been strongly influenced by the belief that the
government would be incapable of controlling deforestation
to fulfill any promises (Fearnside, 2012). The plan, aligned
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FIGURE 1 | Brazil’s original three-phase deforestation baseline set by the National Climate Change Plan (solid-red lines). Dashed-red line is the baseline reference

period based on the average 1996–2005 deforestation. Dashed-blue lines represent deforestation reduction targets. Dashed-green lines are observed

deforestation averages.

with other national conservation programs (in particular, the
PPCDAm), included the country’s commitment to achieving zero
illegal deforestation in the Amazon by 2030 (Brazil, 2008)—note
that the qualifier “illegal” leaves large tracts of land vulnerable to
legal deforestation, for which authorization can more easily be
obtained since the CAR implementation (Fearnside, 2017). To
accomplish this goal, the plan set three consecutive deforestation
reduction targets based on 4-year periods (Figure 1). The first
target was to reduce the average rate of forest loss by 40% during
2006–2009 based on the 1996–2005 average (from 19,625 to
11,775 km2 year−1). An additional 30% reduction target was
set for the two subsequent quadrennium, 2010–2013 (8,243 km2

year−1) and 2014–2017 (5,770 km2 year−1), based on their
respective previous 4-year deforestation averages. In 2010, the
government adjusted the initial deforestation reduction targets
set by the plan (Federal Decree No. 7390). The new target aimed
for 80% reduction in annual Amazonian deforestation, again
in relation to the 1996–2005 average, by 2020 (equivalent to a
reduction of 3,925 km2 year−1), as well as 40% reduction in
annual clearing rates in the Cerrado (savanna) biome based on
the 1999–2008 average (Brazil, 2013a).

Brazil’s PPCDAm and the National Climate Change Plan were
the basis for a series of REDD+-related measures announced
by the country since 2008 (West, 2016). Among those are the
establishment of the national Forest Reference Emission Level for
Reducing Emissions from Deforestation in the Amazonia Biome
for REDD+ Results-based Payments under the UNFCCC in 2014
(Brazil, 2014), the national REDD+ strategy, announced in 2016
and expected to launch in 2020 (Brazil, 2016), and the Amazon

Fund, launched in 2008. The fund was designed to raise and
manage donations for the promotion of actions aligned with the
PPCDAm’s goals to prevent, mitigate, and monitor deforestation,
as well as to promote forest conservation and sustainable use of
natural resources (Brazil, 2016). To date, the fund has raised over
USD 1.2 billion in donations, mainly from the government of
Norway, with smaller amounts fromGermany and Petrobras (the
Brazilian semi-public petroleum industry; Correa et al., 2019). In
exchange for the donations, the Amazon Fund issues certificates
of avoided carbon emissions from deforestation, which are
nominal and non-transferable (Brazil, 2013b).

The combination of national conservation actions and
international commitments has played a part in the declines of
forest loss and consequential reductions in GHG emissions from
LUCC, especially since 2008. Deforestation-control measures
have also played a role in altering the spatial pattern of
deforestation in the Amazon region (Arima et al., 2011; Rosa
et al., 2012; Godar et al., 2014; Kalamandeen et al., 2018).
Moreover, while most Amazonian states experienced a noticeable
decline in forest loss between 2004 and 2012, deforestation
trends are rising again in many states and in the region
as a whole.

METHODS

We used a spatially-explicit LUCC model, TerrSet v.18.2,
to spatialize Brazil’s 2006–2017 official deforestation baseline
(Eastman, 2015; Figure 1). LUCC models generally simulate two
complementary outcomes: (1) an expected amount of change
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over time; and (2) the spatial allocation of the change in the
landscape. The first outcome is usually informed by observed
changes in land use/cover between two or more points in time
(i.e., historical trend). In this study, the amount of change was
informed by the three-phase deforestation baseline set by the
original National Climate Change Plan, based on the official
statistics reported by INPE (solid red lines in Figure 1). Given
the presence of state-level plans to control deforestation in the
Amazon, we assume each state to share the same deforestation
reduction targets (in percentages) as the Amazonian baseline.

The spatialization of the plan’s deforestation baseline was
based on state-level, likelihood-of-deforestation maps (≈1 km2

spatial resolution). The maps (one map for each state) were the
output of the Multi-Layer Perceptron (MLP), an artificial neural
network (ANN) algorithm in TerrSet (Sangermano et al., 2010).
Observed LUCC patterns during the 2000–2004 calibration
period obtained from the Global Forest Change dataset (Hansen
et al., 2013)—before REDD+ gained international momentum
and before the launch of Brazil’s PPCDAm—were used to
compute the likelihood of deforestation in each of the nine
Amazonian states: Acre; Amapá; Amazonas; Maranhão;
Mato Grosso; Pará; Rondônia; Roraima; and Tocantins
(Figure 2). For each state, the MLP was informed by random
samples of forest pixels that underwent LUCC or remained as
forest throughout the calibration period. Based on ∼10,000
interactions, the MLP established complex mathematical
relationships following an ANN structure among 29 explanatory
maps (Supplementary Table 1 and Supplementary Figure 1)
to mimic the 2000–2004 spatial pattern of the Amazonian
deforestation (Eastman, 2015). At each iteration, the MLP
attempted to lessen the error of the ANN, making future
responses more likely to be correct (Chan et al., 2001). This was
done by testing the fitted ANN informed by half of the samples
against the other half (i.e., calibration accuracy). Lastly, we
used the required number of pixels with the highest computed

deforestation risk in each state to spatialize the area of expected
forest loss for the 2006–2017 period defined by the National
Climate Change Plan’s deforestation baseline. The spatialized
2006–2017 baseline scenario was then compared to the observed
2006–2017 deforestation in the region. The map comparison
allowed quantification of (1) areas where deforestation was
expected but did not occur, (2) areas where deforestation
was expected and occurred, and (3) areas where deforestation
was not expected but did occur.

The spatialized, state-level baselines were also used to quantify
the CO2 emission reductions in the Brazilian Amazon during
the 2006–2017 period by comparing the areas of simulated and
observed deforestation to five biomass-density maps available
for the region (Baccini et al., 2012, 2017; Soares-Filho et al.,
2014; Avitabile et al., 2016; Englund et al., 2017). We used
the biomass-density maps to compute stock averages (and
standard errors) at the pixel level. Stocks were conservatively
estimated based exclusively on the living biomass (i.e., above—
plus belowground). Belowground biomass estimates were based
on a default root-to-shoot ratio of 0.235 (Mokany et al., 2006).
Carbon emissions (in the form of Mg CO2) were based on
a standard biomass-carbon fraction of 0.47 (IPCC, 2006) and
the molecular weights of carbon dioxide/carbon (i.e., 44/12).
Because carbon stocks are not zero after deforestation (e.g.,
crops and pastures also store some biomass), we adopted a post-
deforestation land-use scenario with 28.5Mg ha−1 of biomass at
equilibrium (Fearnside, 1996) and a conservative carbon fraction
of 0.5, resulting in a stock of 52.25Mg CO2 ha

−1.

RESULTS

Most state-level models used for the baseline spatialization
presented MLP calibration accuracy between 70 and 89%
(Supplementary Table 2). These values suggest that the ANNs
were successful at explaining the deforestation patterns observed

FIGURE 2 | Flowchart of the deforestation baseline spatialization based on artificial neural networks (ANN). Relationships among variables associated with

deforestation from the Input Layer (“neurons”) are established in the nodes of the Hidden Layer as an exercise to reproduce the observed pattern of deforestation in

the Output Layer. The ANN output is a raster map with ranked likelihoods of deforestation at the pixel level. White boxes represent inputs or outputs, shaded boxes

represent processes.
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from 2000 to 2004 in the Amazonian states. Accuracies were
lower for the states of Maranhão (64%) and Tocantins (61%). The
most important explanatorymaps driving the accuracy the ANNs
were distances from roads in Roraima and Pará, from previously
deforested areas in Acre, Amapá, Amazonas, and Mato Grosso,
and from sawmills in Maranhão, the ecological-economic zoning
in Rondônia, andmining potential in Tocantins. Other important
explanatory variables among the state ANN models were the
categorical maps of ranked-conservation priority, soil quality,
indigenous lands, settlements, and biomes, and the distance-
based maps from timber transportation areas, slaughterhouses,
urban centers, state capitals, highways, major rivers, and soybean
processing plants (Supplementary Figure 1).

Deforestation Reductions
The three-phase deforestation baseline for the Brazilian Amazon
assumed 158,572 km2 of forests to be lost from 2006 to 2017,
whereas, according to Brazil’s official statistics, the observed
deforestation for that period was 96,251 km2 (nearly 40% of the
baseline). Most of the 62,321 km2 of avoided forest loss (i.e., the
difference between the baseline and the observed deforestation)
from 2006 to 2017 took place in Mato Grosso state (−40,938
km2), followed by Rondônia (−9,898 km2) and Pará (−9,134
km2). For the same period, deforestation increased in the states
of Amazonas (924 km2), Amapá (377 km2), and Roraima (691
km2) in comparison to the baseline. Proportional reductions in
deforestation at the state level were also higher in Mato Grosso
(−66%), followed by Tocantins (−64%), Rondônia (−44%), Acre
(−33%), Maranhão (−19%), and Pará (−18%). Proportional
increases in deforestation of 13, 293, and 36% were observed
in Amazonas, Amapá, and Roraima, respectively. The latter

states failed to meet reduction targets because of the recent
deforestation spikes in Amazonas (>1,000 km2 in 2016 and 2017;
above the historical 870 km2 average), the 2008 deforestation
spike in Roraima (which was more than double the annual
historical average), and potentially the challenges of accurately
mapping the annual forest cover in Amapá due to constant
cloud cover.

Deforestation reduction goals for the Amazon were met in
two of the three-phase baseline periods (Figure 1). During the
first baseline phase (2006–2009), 46,312 km2 of forest was lost
(11,578 km2 year−1 on average), representing a reduction of
41% in comparison to the 1996–2005 historical average, i.e., the
reference period for the construction of the baselines (19,625 km2

year−1 on average). The observed deforestation was 1% below
the reduction target of 11,775 km2 year−1 on average for the
2006–2009 period. Only 23,880 km2 of the forest was lost during
the second phase of the baseline (2010–2013; 5,970 km2 year−1

on average), roughly half of what was observed during the first
period, which far surpassed the deforestation reduction target of
8,243 km2 year−1 for the second period. In contrast, during the
third phase (2014–2017), 26,059 km2 of forest was lost (6,515 km2

year−1 on average), which still represented a reduction of 21% in
comparison to the baseline for that period (8,243 km2 year−1 on
average) but did not meet this phase’s target of lowering the forest
loss to 5,770 km2 year−1 on average.

Carbon Emission Reductions
Carbon-dioxide emissions were directly influenced by the spatial
allocation of the deforestation baseline (Figures 3–5). The areas
expected to experience forest loss in the baseline scenario (based
on 2000–2004 LUCC patterns) presented an average carbon

FIGURE 3 | Likelihood of deforestation informed by the 2000–2004 spatial pattern of forest loss observed in the Brazilian Legal Amazon region.

Frontiers in Forests and Global Change | www.frontiersin.org 5 September 2019 | Volume 2 | Article 52



West et al. Avoided Deforestation in Amazonia

FIGURE 4 | Comparison between the spatialized 2006–2017 deforestation baseline (simulation) and the observed 2006–2017 deforestation (red patches). Simulated

baseline displayed as deforestation hotspots (Kernel density) for improved visualization.

FIGURE 5 | Cumulative baseline and observed carbon emissions from deforestation for the 2006–2017 period in the Amazonian states of Brazil. Error bars represent

standard errors computed at the pixel level of the biomass-density maps.

stock equivalent to 313 ± 69.8Mg CO2 ha−1, whereas the
areas that experienced deforestation during the study period
averaged 362.5 ± 73.5Mg CO2 ha−1 (Table 1). Amazon wide,
the 62,321 km2 of saved forests from 2006 to 2017 were
associated with the avoided emission of 1.5 ± 0.4 Pg CO2 to

the atmosphere. The state of Mato Grosso alone contributed
to 1.2 ± 0.2 Pg CO2 (74%) of the total emission reductions,
followed by Rondônia (0.3 Pg CO2; 19%). At the state level,
proportional emission reductions were the highest in Tocantins
(−75%), followed by Mato Grosso (−67%), Rondônia (−39%),
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TABLE 1 | Carbon-dioxide emission reductions based on the original deforestation baseline set by Brazil’s National Climate Change Plan from 2006 to 2017 (standard

errors reported in parenthesis).

State Spatialized baseline deforestation

(2006–2017)

Observed deforestation

(2006–2017)

Forest

savings

(km2)

Carbon-dioxide emission

reductions from the

avoided deforestation

(1,000Mg CO2)

Area (km2) Average net carbon

emission (Mg CO2 ha−1)

Area (km2) Average net carbon

emission (Mg CO2 ha−1)

Acre 4,860 397.3 (±100.4) 3,270 469.2 (±91.2) 1,590 39,638 (±18,972)

Amazonas 7,028 468.2 (±73.5) 7,952 460.0 (±74.1) −924 −36,748 (±7,300)

Amapá 128 108.9 (±47.9) 505 319.4 (±66.9) −377 −14,730 (±2,761)

Maranhão 7,668 238.3 (±76.7) 6,173 241.1 (±74.7) 1,495 33,832 (±12,690)

Mato Grosso 61,869 282.1 (±55.5) 20,931 280.6 (±58.0) 40,938 1,157,929 (±221,729)

Pará 50,537 325.9 (±78.2) 41,403 394.8 (±79.7) 9,134 12,039 (±65,026)

Rondônia 22,424 339.8 (±80.8) 12,616 367.6 (±77.0) 9,808 298,236 (±84,041)

Roraima 1,944 331.8 (±63.6) 2,635 414.8 (±65.9) −691 −44,801 (±4,996)

Tocantins 2,113 181.6 (±72.2) 766 124.0 (±44.7) 1,347 28,874 (±11,897)

Weighted average 313.0 (±69.8) 362.5 (±73.5)

Total 158,572 96,251 62,321 1,474,270 (±399,696)

Acre (−21%), and Maranhão (−19%) when compared to their
respective deforestation baselines. In contrast, our simulations
suggest that the 50,337 km2 expected to be deforested in the
baseline scenario for Pará state had an average carbon stock
equivalent to 325.9 ± 78.2Mg CO2 ha

−1 (likely associated with
degraded, secondary forest), which is nearly 20% lower than the
average stock in the 41,403 km2 that experienced deforestation
during 2006–2017 (394.8 ± 79.7Mg CO2 ha

−1; likely influenced
by the presence of primary forests from less-accessible locations).
As a result, the 9,134 km2 of reduced deforestation in Pará
represented only an average proportional reduction of −0.8%
in emissions when compared to the baseline. Among the states
that increased their annual deforestation during 2006–2017 in
comparison to the 1996–2005 reference average, Amapá had the
largest proportional increase in emissions (1053%; but remained
the lowest in absolute terms), followed by Roraima (69%) and
Amazonas (11%).

Despite the overall reduction in deforestation at the Amazon
level, as well as in six of the nine Amazonian states, our
results suggest that only three of them (Mato Grosso, Rondônia,
and Tocantins) achieved significant carbon emission reductions
when compared to their respective baselines during the study
period (Figure 5). In contrast, Amapá and Roraima presented
significant increases in carbon emissions compared to their
respective deforestation baselines.We note that these findings are
subject to considerable uncertainty in biomass estimates at the
pixel level, inherent to the biomass-densitymaps employed in our
analysis (captured by the large standard-error bars in Figure 5).

DISCUSSION

Biomass and Carbon-Stock Uncertainties
The spatial allocation of deforestation is a critical component of
estimating GHG emissions based on biomass-density maps. In
our case, standard model validation methods (i.e., comparison

between simulated and observed maps; Visser and De Nijs,
2006) do not apply because our goal was to simulate a spatially-
explicit counterfactual scenario for what could have happened
without the policy-induced shifts in Amazonian deforestation
patterns (Arima et al., 2011; Rosa et al., 2012; Godar et al.,
2014; Kalamandeen et al., 2018). To assess the validity of our
simulation, we instead rely on calibration accuracy assessments.
Calibration accuracies of the ANN models were mostly high
(61–89%; Supplementary Table 2) and comparable to others
reported in the literature (85% in Sangermano et al., 2012; 74–
85% Thies et al., 2014; 61% in Riccioli et al., 2016; and 71% in
West et al., 2018a).

Another caveat relates to the accuracy of the biomass-density
maps. While the maps used here are arguably among the state-
of-the-art datasets available in the literature (Baccini et al., 2012,
2017; Soares-Filho et al., 2014; Avitabile et al., 2016; Englund
et al., 2017), biomass estimates are inherently subject to large
(and often unreported) uncertainty at the pixel level (Mitchard
et al., 2014; Ometto et al., 2014; Fearnside, 2018). Limited
ground measurements, inaccurate plot coordinates, and the use
of different allometric models are some examples of uncertainty
drivers behind biomass-density maps with large area coverage
and mapping units (Mitchard et al., 2013; Saatchi et al., 2015;
Englund et al., 2017). Other constraints that limit accurate
estimations of changes in biomass stocks, and consequently
carbon emissions, emerge from often incomplete information on
liana, dead wood, belowground biomass, hollow stems, and soil
carbon (Malhi et al., 2006; Nogueira et al., 2008; Chatterjee et al.,
2018), as well as the fate of the harvested timber prior to forest
clearing (Lippke et al., 2011). Englund et al. (2017) emphasize
that, while biomass-density maps tend to focus on aboveground
stocks, it is not always clear what biomass or carbon pools they
consider. As a result, Avitabile et al. (2016) noted lower estimates
in their dataset for central Amazonia when compared to the
map produced by Baccini et al. (2012), which in turn, presented
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lower estimates than the Baccini et al. (2017) updated dataset.
Given the unreported data constraints, we attempted tominimize
such limitation by adopting the average stock from five biomass-
density maps to estimate the carbon emissions reductions from
the avoided deforestation in the Brazilian Amazon.

Carbon stock averages estimated in this study for the areas of
observed and simulated deforestation in the Amazon (313± 69.8
and 362.5 ± 73.5Mg CO2 ha−1, respectively) overlap with the
previous value adopted by government to quantify the avoided
emissions from the loss of “intact” forest in the region (i.e.,
366.7Mg CO2 ha−1; Brazil, 2009). Based on that value, Brazil’s
gross avoided emissions from deforestation during 2006–2010
were estimated at 2.7 Pg CO2 (Brazil, 2009), or 1.4 Pg CO2 in
terms of net avoided emissions based on the assumptions adopted
in this study. The per-hectare value was, however, subsequently
revised upwards with the inclusion of belowground biomass and
the biomass from palms, vines, and litter (resulting in a weighted
average of 555.9Mg CO2 ha−1 across the whole region) for the
calculation of the climatic benefits from the avoided deforestation
achieved by the country (Brazil, 2014; Fearnside, 2018).

External factors, such as shifts in commodity prices and
currency exchange rates, are known to influence deforestation
rates in the Amazon (Hargrave and Kis-Katos, 2013; Assunção
et al., 2015). During the first years of the National Climate
Change Plan’s baseline period, both agricultural commodity
prices and currency exchange rates were significantly lower than
the historical averages (Fearnside, 2017). Considering an average
price of USD 5Mg CO−1

2 (World Bank, 2018), and assuming that
the reductions in annual deforestation rates were the result of
improvements in Brazil’s environmental governance rather than
external factors, findings from this study suggest that the 2006–
2017 carbon emission reductions from LUCC in the Brazilian
Amazon, based on the original national baseline, are valued
at USD 7.4 ± 2 billion. Alternatively, by assuming that only
56% of the decline in deforestation could be attributed to the
government’s efforts, as suggested in the literature (Assunção
et al., 2015; Cunha et al., 2016), the value of the avoided
deforestation would be USD 4.1 ± 1.1 billion. In both cases,
these estimates far exceed the current amount of USD 1.2 billion
donated to the Amazon Fund to support forest conservation and
sustainable development activities in the country (Correa et al.,
2019). We note that these values only refer to emissions from
deforestation and do not necessarily capture the impacts of forest
degradation from logging and associated facilitation of forest
fires and biological invasions by lianas, bamboos, or pioneer tree
species (e.g., Vidal et al., 2016; Tyukavina et al., 2017; Aragão
et al., 2018). The Brazil’s control measures have been much more
effective against deforestation (clear-cutting) than against the
(legal and illegal) degradation from logging (Souza et al., 2013;
Brancalion et al., 2018).

Attribution of Deforestation Reductions
This study does not establish causal links between the
government’s efforts to mitigate deforestation and the estimated
reductions in carbon emissions. Nevertheless, progress toward
disentangling the effects of conservation policies on forest loss
is particularly relevant because of the certificates of emission
reductions from deforestation issued by Amazon Fund (Brazil,

2013b). Like in this study, the fund avoided the attribution
challenge by assuming all reductions vis-à-vis a baseline to be
eligible for “results-based” compensation.

Results-based compensations for avoided deforestation can
be controversial and have both advantages and disadvantages
(Pana and Gheyssens, 2016; Sills et al., 2017; West et al., 2018b).
Results-based accounting gives credit or blame for changes in
deforestation rates independent of the causes. This choice is
advantageous because causal attribution can be difficult and
uncertain, and giving any reward for environmental services
is often rendered inviable by requiring the demonstration of
“additionality,” i.e., showing that reductions in deforestation
would only have occurred because of a mitigation effort
(Fearnside, 2000). Results-based assessments from the Amazon
Fund adopt a baseline corresponding to a 10-year deforestation
average, updated every 5 years (the same baseline as used for the
Green Carbon Fund of the UNFCCC). This approach has caused
controversy because rewarded reductions in deforestation can be
short-lived (i.e., raising the issue of “permanence;” West et al.,
2019), and this is aggravated by delays between the reporting of
the reductions in question and the granting of financial rewards
(e.g., Sax, 2019). For example, Brazil’s January 2019 proposal to
the Green Climate Fund to receive payment for the 2014–2015
avoided deforestation, covered a period when deforestation was
trending upward since Brazil’s deforestation slowdown ended
in 2012. Still, the justification for payment was based on the
difference between the deforestation rate in those years and
the average from 1996 to 2010, which is the Forest Reference
Emission Level (FREL) for reducing emissions from deforestation
in the Amazon for REDD+ results-based payments that Brazil
submitted to the UNFCCC in November 2014 (Brazil, 2014).

It is important that Brazil be conservative in its claims of
avoided deforestation. The temptation must be avoided to allege
that all the decline in deforestation after 2004 was due to
governance efforts such as the PPCDAm. Such a claim puts at
risk the entire effort to transform the environmental services of
Amazonian forests into a viable basis for maintaining both the
forests and the traditional human population that inhabits them
(Fearnside, 1997, 2008).

CONCLUSIONS

In this study, we estimated the climatic benefits in terms
of carbon emission reductions from the avoided Amazonian
deforestation during 2006–2017 based the spatialization of
the deforestation baseline set by Brazil’s National Climate
Change Plan (Brazil, 2008). Results from state-level simulations
suggest that the accumulated 62,321 km2 difference between
the baseline scenario and the observed Amazonian deforestation
was associated with the avoided emission of 1.5 ± 0.4 Pg
CO2 to the atmosphere. Most of the total emission reductions
(74%) occurred in Mato Grosso, the state with the highest
historical rates of LUCC in the region. Overall, the decline in
deforestation rates from 2004 to 2012 resulted in a substantial
reduction in emissions, and the net result was still highly
positive by 2017 despite the upward trend in deforestation
after 2012. Since 2018, Brazil’s new presidency has continuously
proposed to weaken forest conservation regulations and related
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institutions (Abessa et al., 2019). Such plans risk a reversal toward
Brazil’s inglorious past as the world leader in deforestation
and the loss of the carbon emission reductions achieved
so far.
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Supplementary Table 1. Description of explanatory maps. 

Predictor map Description Source 

Distance from 

previous 

deforestation 

Euclidean-distance map from non-forest patches in 

2000. 

Global Forest Change dataset, University 

of Maryland 

(https://earthenginepartners.appspot.com/)  

Biomes Categorical map of the biomes in the Legal 

Brazilian Amazon. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

state capitals 

Euclidean-distance map from state capitals in 

Brazil. 

Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/) 

Distance from 

townhalls 

Euclidean-distance map from townhalls with 

government agency offices. 

Brazilian National Water Agency (ANA; 

http://hidroweb.ana.gov.br/) 

Distance from 

highways 

Euclidean-distance map from federal and state 

highways. 

Brazilian National Water Agency (ANA; 

http://hidroweb.ana.gov.br/) 

Distance from 

roads 

Euclidean-distance map from regional roads. Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/) 

Indigenous lands Categorical map of indigenous lands. Brazilian National Indian Foundation 

(FUNAI; http://www.funai.gov.br/) 

Protected areas Categorical map of protected areas established 

before 2005. 

Brazilian Chico Mendes Institute of 

Biological Conservation (ICMBio; 

http://www.icmbio.gov.br/). 

Distance from 

sawmills 

Euclidean-distance map from major sawmills. Amazon Institute of People and the 

Environment (IMAZON; 

http://www.imazongeo.org.br/) 

Distance from 

slaughtering 

houses 

Euclidean-distance map from major slaughtering 

houses. 

Amazon Institute of People and the 

Environment (IMAZON; 

http://www.imazongeo.org.br/) 

Distance from 

rivers 

Euclidean-distance map from major rivers. Brazilian National Water Agency (ANA; 

http://hidroweb.ana.gov.br/) 

Conservation 

priority areas 

Categorical map of the conservation distinct 

priority areas within the Legal Amazon. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

timber 

transportation 

areas 
 

Euclidean-distance map from timber transportation 

areas. 

Amazon Institute of People and the 

Environment (IMAZON; 

http://www.imazongeo.org.br/) 
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Supplementary Table 1. Description of explanatory maps (continued). 

Logging frontiers  Categorical map of logging frontier areas. Amazon Institute of People and the 

Environment (IMAZON; 

http://www.imazongeo.org.br/) 

Distance from 

biorefineries 
Euclidean-distance map from major biorefineries. Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

soybean 

markets 

Euclidean-distance map from major soybean 

markets. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

soybean plants 
Euclidean-distance map from major soybean 

plants. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

soybean 

processing 

facilities 

Euclidean-distance map from major soybean 

processing facilities. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Distance from 

silos 
Euclidean-distance map from silos for agricultural 

production storage. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Elevation Continuous map based on a mosaic of the Shuttle 

Radar Topography Mission (SRTM) 1 Arc-Second 

Global, Digital Elevation Maps (meters). 

U.S. Geological Survey (USGS; 

http://earthexplorer.usgs.gov/)  

Slope Continuous slope map (degrees). Based on the elevation map. 

Ecological-

economic 

zoning 

Categorical map of the macro ecological-economic 

zoning of the Legal Amazon. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/) 

Macropolitical 

regions 

Categorical map of macropolitical regions. Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/)  

Micropolitical 

regions 

Categorical map of micropolitical regions. Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/)  

Municipalities Categorical map of municipal boundaries. Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/) 

Mining potential Categorical map of mapped areas with mining 

potential. 

Brazilian Institute of Geography and 

Statistics (IBGE; http://dados.gov.br/) 

Settlements Categorical map of settlements.  

Soil quality  A categorical map that indicates soil agricultural 

potential. 

Ministry of Environment (MMA; 

http://mapas.mma.gov.br/)  
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Supplementary Figure 1. Explanatory maps. 

Note: ED = Euclidean-distance map; CTG = categorical map; CNT = continuous map. 
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Supplementary Figure 1. Explanatory maps (continued). 

Note: ED = Euclidean-distance map; CTG = categorical map; CNT = continuous map. 
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Supplementary Figure 1. Explanatory maps (continued). 

Note: ED = Euclidean-distance map; CTG = categorical map; CNT = continuous map. 
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Supplementary Figure 1. Explanatory maps (continued). 

Note: ED = Euclidean-distance map; CTG = categorical map; CNT = continuous map. 
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Supplementary Table 2. Calibration accuracy of the Multi-Layer Perceptron (MLP) algorithm. 

State model Calibration accuracy of the MLP (%) 
Acre 83.2 

Amapá 87.5 

Amazonas 85.8 

Maranhão 64.1 

Mato Grosso 70.5 

Para 81.3 

Rondônia 76.2 

Roraima 88.7 

Tocantins 60.6 
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