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SIMULATED DEFORESTATION VERSUS SATELLITE DATA IN 
RORAIMA, NORTHERN AMAZONIA 
 
Resumo  
Analises de cenários de mudança de uso e cobertura da terra na Amazônia são passos 
necessários para subsidiar decisões que podem evitar a emissão de milhões de 
toneladas de CO2 para a atmosfera. Portanto, é importante avaliar modelos que visem 
a simulação de cenários futuros. O atual estudo avaliou cenários simulados no período 
2011-2017, em Roraima, situado na porção norte da Amazônia brasileira. Comparou-se 
o desmatamento simulado com os dados de satélite do PRODES. O mapeamento para 
as avaliações compreendeu (i) uma Área de Uso Silvo-pastoril – AUS (excluindo terras 
indígenas, unidades de conservação e não floresta) intersectada com (ii) uma grade de 
09 (nove) sub-áreas de 10.000 km2 (100 × 100 km). O cenário de 2013 apresentou a 
maior similaridade (55,2%) com o mapa correspondente do PRODES. Apesar das 
divergências entre o desmatamento simulado nos cenários e o desmatamento oficial, 
no geral, as avaliações demonstraram a validade do modelo e a sua habilidade para 
gerar cenários que representam, de forma realística, o desmatamento ocorrido em 
Roraima no período analisado. 
 
Palavras-chave: Mudança de uso da terra, Modelagem ambiental, Sensoriamento 
remoto, Amazônia, Brasil.  
 
Abstract  
Scenario analyses of land-use and land-cover change in the Amazon are necessary 
steps to support decisions that can avoid the emission of millions of tons of CO2 into the 
atmosphere. It is important to evaluate models that aim to simulate future scenarios. 
The present study evaluated scenarios generated for the 2011-2017 period in Roraima 
state, in northern Amazonia. Simulated deforestation was compared to PRODES 
satellite data. The mapping for the evaluations comprised (i) a “silvopastoral use area” 
(excluding indigenous lands, conservation units and non-forest areas) intersected with 
(ii) a grid of nine (9) 10,000-km2 (100 × 100-km) sub-areas. The 2013 scenario had the 
greatest similarity (55.2%) with the corresponding PRODES map. Despite divergences 
between simulated deforestation in the scenarios and PRODES deforestation, the 
evaluations generally demonstrated the model’s validity and its ability to produce 
scenarios that realistically represent the deforestation that occurred in Roraima state 
during the analyzed period. 
 
Keywords: Land-use change, Environmental modeling, Remote sensing, Amazon, 
Brazil. 
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1. INTRODUCTION 
 
Deforestation actors and motives 
 

Actors 
 

Deforestation is done by a wide variety of actors for a wide variety of reasons. 

Roraima, located in the northern portion of Brazil’s Amazon region, has almost all of the 

actors and processes that are present in other parts of the region, although the relative 

importance of each varies greatly in different parts of Amazonia and in different parts of 

the state of Roraima. Actors include migrants, that is, family farmers (small farmers) 

who come from other states to settle in Roraima. These are mostly individual migrants, 

although Roraima has had some activity by organized groups (“sem-terras”). Many of 

these actors obtain lots in government “settlement projects” of different types (YANAI et 

al. 2017). However, deforestation expands further when squatters illegally occupy land 

beyond the settlement boundaries, often resulting in endogenous roads extending from 

the access roads (vicinais) in the official settlement projects. An example is an illegal 

road extending from access road No. 7 in the Jatapú Settlement project in Roraima’s 

municipality of Caroebe (BARNI et al. 2012). Also important are actors with more wealth 

than the small farmers for whom settlement projects are created. These include an 

Amazon-wide pattern of wealthy newcomers purchasing multiple lots in a settlement 

project and operating them as a single medium or large landholding (FEARNSIDE 1986, 

1989; CARRERO et al. 2011; YANAI et al. 2020). 

Roraima also has its share or “grileiros,” or “land grabbers,” who illegally 

appropriate government land and usually later subdivide it for sale to others. Grileiros 

often use violence and threats of violence to remove other claimants, and can obtain 

official recognition of their claims through corrupt means (FEARNSIDE 2008a; TORRES 

et al. 2017). A series of recent laws now facilitates land grabbing, for example the limit 

on the area that can be “legalized” per claimant was increased from 100 ha to 1500 ha 

in 2009 by Law No. 11,952 (PR 2009), and in 2017 Law No. 13,465 increased this area 

to 2500 ha (PR 2017). Land grabbing is now further facilitated by a provisional measure 
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(MP910) signed by President Bolsonaro on 10 December 2019 allowing legalization of 

land claims through a mere “self-declaration” of ownership (PR 2019). The provisional 

measure has the force of law for 120 days after it was signed by the president and can 

be made permanent if approved by the National Congress, as is expected (see: 

BRANFORD and BORGES 2019). In addition, a wide-ranging dismantling of Brazil’s 

environmental agencies and policies under the presidential administration that took 

office on 1 January 2019 means that regulations restricting deforestation and logging 

are often not enforced (FERRANTE and FEARNSIDE 2019). 

An important group of deforestation actors is made up of mostly urban individuals 

who invest money from other sources in purchasing rural properties and in 

deforestation, mostly for pasture. The funds may be from legal sources, such as 

pharmacies, gas stations and other businesses, or from illegal sources such as 

trafficking in drugs, arms or people, or from government corruption, truck hijacking and 

tax evasion (FEARNSIDE 2005, 2008a). In Roraima funds from illegal gold mining in 

indigenous lands can be invested this way, both by wealthy patrons of this activity and 

by individual “garimpeiros” (“wildcat” miners) (e.g., MACMILLAN 1995). 

Actors on the other side – those who try to slow and contain deforestation – 

include environmental agencies such as the federal government’s IBAMA (Instituto 

Brasileiro do M eio Ambiente e dos  Recursos Naturais Renováveis) and the state 

government’s FEMARH (Fundação Estadual do Meio Ambiente e Recursos Hídricos). 

The Federal Public Ministry (MPF), a public prosecutor’s office created by Brazil’s 1988 

constitution, also has an important role through its ability to threaten punishment for the 

heads of the federal and state environmental agencies when they fail to enforce 

regulations governing deforestation. Other actors include associations of producers of 

present or likely future crops, such as soy and palm oil (e.g., NEPSTAD et al. 2014). 

Non-governmental organizations at the local, national and international level are also 

actors that can press for deforestation control (e.g., FEARNSIDE 2017). Governments 

and consumers in other parts of the world also influence Brazilian policies affecting 

deforestation through the threat of boycotts of Brazil’s agricultural exports and through 

contribution of funds that assist in Brazil’s deforestation control efforts (e.g., WEST et al. 
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2019). The effectiveness of these different actors is, of course, highly varied. Roraima 

has long been notorious for having a state government with environmentally destructive 

policies and an aversion to environmental protection; Roraima was one of the three 

states in Brazil’s nine-state Legal Amazonia region that was informally classified by the 

World Bank as a “red” state to indicate this pattern (FEARNSIDE 2016). 

 

Motives 
 
The different actors have different motives, and often there are more than one 

factor that contribute to a decision to deforest. One often hears statements emphasizing 

deforestation for subsistence, that is, for farmers to feed their families directly from the 

crops they harvest. However, this represents a minimal contribution to the total. A much 

larger fraction comes from agriculture and cattle ranching activities that generate 

products for sale. This applies both to small farmers and to larger landholders. 

However, this “normal” economic logic is only part of the motivation for deforestation. 

Profits in deforested areas can be boosted by various kinds of government subsidies, 

such as loans at interest below market rates and “amnesties” forgiving or indefinitely 

postponing loan debts whenever crops fail or other adversities appear (FEARNSIDE 

2001, 2020). In Roraima subsidies currently include support for biofuel production 

(FERRANTE and FEARNSIDE 2020). Profits from timber also motivate clearing, both 

from the sale of wood from trees felled in the areas that are cleared and by the licenses 

permitting the clearing being used to give an appearance of legality to wood cut in 

unauthorized selective logging being carried out either in the same property or 

elsewhere. This practice is widespread in Amazonia (BRANCALION et al. 2018). 

A major motivation for deforestation in Amazonia is to establish and maintain 

land tenure (FEARNSIDE 1979). Before a land title is obtained, deforestation is 

regarded as an “improvement” proving “productive use” of the land, which is a 

requirement for official recognition (e.g., INCRA 2019). After official recognition is 

obtained, deforestation is still motivated by land-tenure concerns (especially for large 

landholders) as a means of guaranteeing that the land will not be invaded by squatters 
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(especially organized “sem-terras”), and that it will not be considered “unproductive” and 

therefore confiscated by the government for agrarian reform. 

 
The importance of simulation models 
 

Future scenarios of land-use and land-cover change in the Amazon are important 

tools for regional analyses in space and time. They anticipate possible deforestation 

trajectories and offer valuable inputs for decision making to protect the forest and its 

environmental services, preventing, for example, millions of tons of CO2 from being 

released into the atmosphere (FEARNSIDE 2008b; IPCC 2013; LE CLEC`H et al. 2019; 

SIIKAMÄKI et al. 2019; SOARES-FILHO et al. 2010). 

A catastrophic forecast generated by a simulation model can mobilize organized 

society and the media to fight against a possible future and prevent it from actually 

happening (SOARES-FILHO et al. 2006). However, it is impossible to measure the 

extent to which catastrophic scenarios, like the BAU (Business As Usual) scenario of 

Soares-Filho et al. (2006), have contributed to the reduction of deforestation in the 

Amazon and the emission of carbon into the atmosphere. Although the importance of 

scenarios cannot be denied, they are only rudimentary simplifications of reality. Notable 

cases include “The Limits to Growth” (MEADOWS et al. 1973) and the “Brundtland 

Report” (CMMAD 1988), both of which spurred discussions on the environment at the 

global level and influenced conservation policies worldwide (OLIVEIRA 2012; 

FEARNSIDE 2019). 

Few environmental-modeling studies have had as much repercussion as that of 

Soares-Filho et al. (2006), which was carried out in the mid-2000s and foresaw the 

destruction of the eastern half of the Amazon rainforest by 2050 (BAU scenario). The 

importance of these scenarios lies precisely in their "non-effectiveness." In other words, 

the fact that the scenario does not entirely match what has happened in reality may be 

its greatest merit. 

The great Roraima fire during the El Niño of 1997/98 was an event of enormous 

national and international repercussion (BARBOSA and FEARNSIDE 1999; MARTINS 

et al. 2012; XAUD et al. 2013). This event can be considered as a catastrophic 

scenario, and it motivated the beginning of discussions that culminated in the creation of 
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public policies for preventing and fighting fires in the state (BARBOSA et al. 2003; 

FONSECA-MORELLO et al. 2017). The great advantage of creating computer 

simulations, unlike the real event, is that they can be manipulated in terms of their 

spatial reach (e.g., the affected area), the intensity of the events (e.g., tree mortality) 

and their timing (e.g., their relation to the frequency of climatic events). They can also 

generate public policies that ensure the conservation of forest carbon stocks without the 

need to burn or damage a single tree. 

Despite the importance of land-use models, there are few studies in the literature 

that seek to demonstrate their validity or effectiveness by comparing the simulated 

results with the real phenomenon after the event in question has occurred. This step is 

generally used for the calibration of simulation models in the training phase (e.g., ROSA 

et al. 2015). In calibrating these models, known data from a short historical time period 

is used for calibration, and the model is expected to reproduce the same patterns 

based, for example, on weights-of-evidence or on a Markov chain. After the training or 

calibration rounds of the modeling, the simulated scenario is validated by comparison 

with the “real” scenario that occurred in a “validation period” subsequent to that used in 

the calibration, thus ensuring independence (SOARES FILHO et al. 2013). 

The present study aimed to evaluate scenarios that had been generated to 

predict the deforestation that would occur between 2011 and 2017 in the state of 

Roraima. We sought to evaluate the model’s efficiency in representing future 

deforestation by comparing the deforestation simulated by the model with what actually 

occurred in the region. For this we used official deforestation data from the Project for 

Monitoring Deforestation in Amazonia by Satellite (PRODES) (INPE 2018). The 

following variables were used as criteria for evaluating the scenarios in the comparison: 

annual occurrence of deforestation (km2, ha); frequency (n); polygon size (ha) and; 

similarity (%) between the generated maps. 

The scenarios were simulated between 2011 and 2050 and modeled using 

Dinamica-EGO 2.4.1 software (https://csr.ufmg.br/dinamica/) considering the MT-GOV 

scenario simulated by BARNI et al. (2015a). In this governance scenario it was 

assumed that deforestation would be controlled in the state only beginning in 2020, in 

line with the commitment voluntarily made by Brazil under the Paris Agreement at COP-
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15 of the United Nations Framework Convention on Climate Change (GONÇALVES et 

al. 2009). In the period prior to 2020 (2011 to 2019), deforestation was assumed to 

continue in accord with the trends observed between 2005 and 2010. 

The state of Roraima can be considered to represent the most recent large 

agricultural frontier in the Brazilian Amazon. This condition still exists due to Roraima’s 

isolation from most of the rest of the Brazilian Amazon (BARNI et al. 2015b). In the near 

future one can expect the creation of new municipalities and settlement projects, the 

implementation of major infrastructure projects including reconstruction of Highway BR-

319 (Manaus - Porto Velho) and building the Bem Querer hydroelectric dam on the Rio 

Branco. These developments would attract migrants to Roraima and intensify disorderly 

land occupation, in addition to increasing emissions of greenhouse gases. 

 

2. MATERIALS AND METHODS 
Study area 
 

The study area covered the entire state of Roraima, with the exception of 

protected areas, which are defined here as indigenous lands and conservation units 

(both national and state). Also excluded were the savanna areas (locally called lavrado) 

in the northeastern portion of the state and areas of oligotrophic ecosystems (locally 

known as campinas) that are characterized by sparse vegetation on seasonally flooded 

sandy soils, which are located in the central and southwestern portions of the state. The 

remaining area, after exclusion of the “silvo-pastoral use area” (SAU) (65,150.0 km2: 

BARNI et al. 2016), is a strip of land along federal highways BR-174 and BR-210 and 

state highway RR-070. All of these highways are associated with secondary roads that 

provide access to the farm lots in settlement projects.  

In order to better understand the assessment of the scenarios, the SAU was 

overlaid with a grid of nine “sub-areas” (SUBs). This set of sub-areas totaled 53,871.4 

km2 (82.7% of the SAU), but it did not exclude any of the deforestation that had 

occurred in the SAU during the period (Figure 1). 
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Figure 1. Study area comprising the “silvo-pastoral use area” (SUA) and the grid of nine sub-areas. 

 

Database 

 

The simulation output for the interval between 2011 and 2017, with 1-ha (100 × 

100-m) spatial resolution (BARNI et al. 2015a), was used for comparison with 

deforestation data for the same period from the PRODES deforestation-monitoring 

program of the National Institute for Space Research (INPE) (INPE 2018). The 

PRODES data represent the “real” or official deforestation in the state during the 

analyzed period. Figure 2 presents a simplified flowchart of the methodology. 
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Figure 2. Flowchart of the methods applied in the systematic evaluation of the simulated scenarios and 

the PRODES data. “SUA” is the acronym for “silvo-pastoral use area.” 

 

The areas (km2) as of 2017 of the land-cover classes that are included in the 

attribute table of the PRODES vector file (Mainclass) were tabulated and are available 

in the Supplementary Material. This represents the SAU landscape. Data manipulation 

(mapping) was performed using QGIS 2.18.1 “Las Palmas” software 

(https://www.qgis.org/pt_BR/site/) and Dinamica-EGO. 

 
Method 
 

To assess the scenarios, simulated annual deforestation and PRODES annual 

deforestation were both vectorized and were evaluated considering only the SAU. Then 

the SAU was intersected with the grid of nine sub-areas, each sub-area originally 

measuring 10,000 km2 (100 × 100 km). However, when crossing the vector layers 

(Intersection of the SAU with the grid), all sub-areas, without exception, lost part of their 

original area (Supplementary Material, Appendix 1).  

The simulation model was calibrated using one of the nine sub-areas, which was 

chosen at random during the training phase. This approach can be considered to be an 

independent alternative to using either ecological-climatic criteria (e.g., BARNI et al. 

2015c) or municipal boundaries (e.g., SOARES-FILHO et al. 2008) to subdivide the 
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study area. This follows the example of Soares-Filho et al. (2013), who used 12 sub-

areas, each corresponding to a Landsat-TM scene, to evaluate methods for calibrating 

land-use models in the Amazon. 

 
Similarity analysis 
 

For this procedure, the 2017 PRODES map in raster format was first degraded 

from 30-m to 100-m spatial resolution in order to be compatible with the resolution of the 

scenarios, after which it was reclassified in the years of the analysis to represent the 

areas of the classes (1) (deforestation) and (2) (forest). To make the 2011 map, for 

example, the deforested areas of the subsequent years (2012 to 2017) had to be 

reclassified to the value (2) (forest) because these areas had not yet been deforested in 

2011. The “non-forest” and “water” classes were reclassified as “no data;” “cloud” areas 

were reclassified as “forest” and residual areas for each year and were assigned to 

class (1) (deforestation) in their respective years of deforestation. This procedure was 

carried out for all years after 2011. 

Subsequently, the similarity between the simulated maps and the reclassified 

PRODES annual deforestation maps was evaluated using the reciprocal similarity 

comparison technique developed by Soares-Filho et al. (2008) as a modification of the 

fuzzy-similarity method (HAGEN, 2003). This method employs multiple “windows” of 

increasing numbers of cells. The simulated annual maps and the annual PRODES 

maps were subdivided into these windows and compared in a sub-model that is 

included in the Dinamica-EGO software. For this assessment, the windows were 

matrices of cells ranging from 3 x 3 cells (300 x 300 m) to 39 x 39 cells (3900 x 3900 

m). 

The method considers the central cell of each window and the states of the cells 

in its neighborhood as parameters for comparison between the maps. It is important to 

highlight that the comparison is made only on the map of the change of interest, that is, 

on annual deforestation, without considering the cumulative deforestation in the 

landscape. In this approach, a similarity index value between maps equal to or greater 

than 50% is considered to be reasonable for validation of a simulation model. 
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The same decision criteria were used to determine whether the simulated and 

“real” maps were similar or not in given years and locations. This approach was used to 

assess both the similarity between the annual scenarios, considering the SAU as a 

whole, and the similarity within each sub-area. 

 

Statistical analysis 

 

Statistical analysis was carried out using R 3.1.1 software (https://www.r-

project.org/). The evaluations consisted of analysis of variance and the “t” test, using the 

raw data obtained from the crossing of vector maps with the SAU and the grid of sub-

areas. Tests were made for differences in “deforested area” (ha: “t” test), “Frequency” 

(n) and “Polygon size” (ha) (non-parametric: Kruskal-Wallis). Pearson's correlation (r) 

was applied to test whether the percentage values (%) obtained from the reciprocal-

similarity test in a 3900 × 3900-m window in each scenario from 2011 to 2017 and in 

each sub-area in the grid are correlated with the values of the variables considered 

above. The following criteria were considered in interpreting the results: values between 

0.10 and 0.29 = low correlation; between 0.30 and 0.49 = medium correlation and; 

between 0.50 and 1.00 = high correlation (COHEN 1988). 

 
3. RESULTS AND DISCUSSION 
 

Comparing simulated deforestation (total in the analyzed period = 949.9 km2: 

annual mean = 135.7 ± 28.7 km2) and real deforestation detected by PRODES (total in 

the analyzed period = 1144.0 km2: annual mean = 163.4 ± 33.2 km2), there was no 

significant difference (t = 2.1788; p = 0.1474; α = 0.05) between the means (Figure 3). 

The real deforestation rates in this period were 41.1% lower than the historical average 

(277.0 km2) computed for the state up to 2010 (BARBOSA et al. 2008; BARNI et al. 

2015c). Despite the significant decrease in deforestation rates in Roraima, this 

decrease was 20% less than the 61.8% decrease in deforestation observed for the 

Amazon as a whole in the same period.  
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The more modest decline in deforestation rates in Roraima up to 2010 may be 

related to the state's own deforestation dynamics, which, on average, seem to be 

disconnected from the deforestation dynamics in the rest of the Amazon (e.g., 

RODRIGUES et al. 2009; FEARNSIDE 2017; FONSECA-MORELLO et al. 2017). This 

was not considered by the model. In fact, one would expect Roraima’s deforestation to 

be restrained by the lack of road connection with most of the rest of the country and by 

the low rural population in the state, which was 23.4% of the state’s total population in 

the last census (IBGE 2019). However, this expected brake on deforestation was not 

seen in practice (e.g., BARNI et al. 2012, 2015c). The lower deforestation rate (~17.0%) 

in the analysis interval shown in the simulated scenarios to the PRODES data as 

compared was due to the presumption of a decrease in deforestation rates such that 

consequent CO2 emissions in the state would be consistent with what was voluntarily 

proposed by the Brazil at COP 15 for the entire Brazilian Amazon (GONÇALVES et al. 

2009; BARNI et al. 2015a). 

 
Figure 3. Comparison between simulated (Scenario) and “real” (PRODES) deforestation. 

Considering the annual deforestation in the nine sub-areas (covering 82.7% of 

the 65,150-km2 SAU), modeled deforestation (period total = 851.2 km2: annual mean = 

121.6 ± 27.2 km2), representing 89.7% of the total simulated deforestation in the SAU, it 

also did not differ from the real deforestation (period total = 987.3 km2: annual mean = 

141.0 ± 43.5 km2), representing 86.3% of the deforestation recorded in the SAU 

between 2011 and 2017 (t = 2.23; p = 0.34; α = 0.05). However, there were some 
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divergences in the total area deforested (ha) and in the frequency (n) when considering 

the annual deforestation computed by the model as compared to that found by 

PRODES within each sub-area individually. For example, there was a significant 

difference (Kruskal-Wallis) between the means for deforested area within the SUB-A4 

sub-area (Difference between polygons = 39.3; p = 0.04) and SUB-A8 (Difference 

between polygons = 39.9; p = 0.04), while the frequency of polygons was significantly 

different only in SUB-A4 (p = 0.02) (Table 1; Figure 4). 

 

Table 1. Deforested area (ha) in the scenarios computed by the model (SUB-An-Sc) and detected by 

PRODES (SUB-An-P) within each sub-area throughout the analysis period.  

  2011 2012 2013 2014 2015 2016 2017 Total 

SUB-A1-Sc 277.5 256.5 324.6 345.0 10.1 58.2 23.5 1,295.3 
SUB-A1-P 540.9 307.1 314.2 586.6 756.4 444.5 529.8 3,479.5 
SUB-A2-Sc 1,880.3 1,368.3 2,137.4 1,982.8 1,247.3 749.4 692.0 10,057.5 
SUB-A2-P 142.0 928.8 2,842.0 2,064.3 1,522.8 3,588.3 588.1 11,676.3 
SUB-A3-Sc 2,128.3 1,759.6 3,323.4 2,407.9 1,414.4 1,054.8 828.8 12,917.2 
SUB-A3-P 1,894.7 1,537.9 3,821.9 5,198.5 1,814.2 4,887.6 1,675.9 20,830.6 
SUB-A4-Sc 3,291.8 2,773.3 4,051.0 4,093.1 4,363.7 3,589.9 3,576.5 25,739.3a 
SUB-A4-P 1,053.2 1,703.2 1,096.5 2,923.9 2,947.9 2,365.9 909.8 13,000.4b 
SUB-A5-Sc 399.4 499.1 800.2 580.3 225.4 211.5 281.3 2,997.2 
SUB-A5-P 357.3 95.3 139.8 145.9 963.9 558.2 586.1 2,846.5 
SUB-A6-Sc 1,137.5 1,179.6 1,496.1 1,373.2 1,331.9 1,056.7 859.9 8,434.9 
SUB-A6-P 1,622.3 1,782.9 1,222.8 2,299.2 1,446.7 3,319.1 1,641.5 13,334.5 
SUB-A7-Sc 1,079.1 1,134.2 1,318.2 1,005.6 1,365.3 1,250.5 1,110.4 8,263.3 
SUB-A7-P 1,812.1 1,164.6 805.7 1,991.0 1,470.6 2,214.7 1,182.5 10,641.2 
SUB-A8-Sc 1,416.6 927.7 1,189.2 1,089.2 697.5 774.0 422.2 6,516.4a 
SUB-A8-P 699.2 1,203.3 1,998.4 1,566.4 2,002.5 1,896.3 3,051.5 12,417.5b 
SUB-A9-Sc 1,222.2 1,105.9 1,894.4 1,469.6 1,378.2 1,165.0 660.3 8,895.6 
SUB-A9-P 1,350.0 1,180.3 1,688.1 1,276.6 1,447.3 2,095.9 1,460.5 10,498.7 
Total-A-Sc 12,832.6 11,004.1 16,534.5 14,346.6 12,033.8 9,910.0 8,454.9 85,116.6 
Mean-A-Sc 1,425.8 1,222.7 1,837.2 1,594.1 1,337.1 1,101.1 939.4 9,457.4 
Total-A-P 9,471.7 9,903.3 13,929.3 18,052.4 14,372.1 21,370.6 11,625.7 98,725.1 
Mean-A-P 1,052.4 1,100.4 1,547.7 2,005.8 1,596.9 2,374.5 1,291.7 10,969.5 
*The letters “a” and “b” under bold values in the “Total” column highlight significant differences 
between the means at the 95% confidence level (Kruskal-Wallis: α = 0.05). 
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Figure 4. Variation in deforested area (ha) in the scenarios computed by the model (A: SUB-Ax-Sc) and 
detected by PRODES (B: SUB-Ax-P) within each sub-area throughout the analysis period. 
 

These inconsistencies are explained by the large deforestation seen in these 

sub-areas both before and during the analysis period. This made it difficult for the model 

to “capture” the dynamics of deforestation, sometimes deforesting “too much” (SUB-A4) 

and sometimes deforesting “too little” (SUB-A8) based on the comparison with 

PRODES. SUB-A4, for example, is a region that historically has had greater 

deforestation pressure due to its proximity to the state’s capital city of Boa Vista (BARNI 

et al. 2015b); this sub-area covers part of the municipalities of Mucajaí, Iracema (right 

bank of the Rio Branco, cut by BR-174), Cantá (left bank and cut by RR-070) and 

Caracaraí (both banks and cut by both highways) (Figure 5a). 

In 2009, for example, the municipality of Mucajaí was on the “black list” of the 

municipalities that most deforested in Brazil’s Amazon region (PR 2007). Currently 

Mucajaí leads the ranking of municipalities in the state in terms of the absolute area 

deforested (1898.2 km2), followed by Cantá (1583.0 km2) and Rorainópolis (1235.8 km2) 

(INPE 2019), the latter being covered by SUB-A8. 

Considering the municipalities of Cantá and Caracaraí, it is expected that there 

will be greater growth in deforestation rates in the coming years due to the paving of 

Highway RR-070, which bisects these municipalities from south to north beginning at 

km 500 of Highway BR-174 in Novo Paraíso, in the municipality of Caracaraí. The 

paving is in its final phase, and it is expected that the highway will act as a “magnet” 

attracting immigrants to the region (SOARES-FILHO et al. 2004; BARNI et al. 2018a).  

 



15 
 

  
Figure 5. In (A), location of subarea four (SUB-A4) between subareas three (SUB-A3) and five (SUB-A5); 
and in (B), subarea eight (SUB-A8) to the left of subarea nine (SUB-A9). The black lines represent the 
outlines of the grid sub-areas and the yellow lines represent the borders of the municipalities. 
 

All these considerations concerning SUB-A4 are even more worrying due to the 

fragility of the ecotone forests (contact zone between ombrophilous forest and the 

savannas) that characterize this sub-area. Due to their proximity to the savanna (locally 

called the “lavrado”), these forests have repeatedly been affected by major forest fires, 
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especially in El Niño years (BARBOSA and FEARNSIDE 1999; BARNI et al. 2015c; 

FONSECA et al. 2017). 

Contrary to what was seen in sub-area SUB-A4, where our model had its worst 

performance, SOARES-FILHO et al. (2013) reported that their models performed best 

(with highest accuracy) for deforestation frontiers that were already consolidated, as is 

the case in SUB-A4. SOARES-FILHO et al. (2013) found that the worst performances 

were for recent deforestation frontiers and for those that were in transition, with multiple 

actors present and where changes in the deforestation processes were underway. This 

is the case in sub-area SUB-A8, which covers a large part of the municipality of 

Rorainópolis and, as mentioned above, contains both a large consolidated deforested 

area close to the municipal seat and other deforestation frontiers in different stages of 

consolidation, ranging from frontiers that have begun to be occupied only recently 

(2014-2015), are in transition (2008-2009) and are already consolidated (1985-2002) 

(BARNI et al. 2012, 2018a; MOURÃO 2011). All of these processes are related to the 

creation of settlement projects (YANAI et al. 2017) and to the invasion of public lands 

that lack any protection status (FEARNSIDE 2017). 

In SUB-A8, deforestation has been speeded by the role that authorizations 

granted for the use of wood in areas approved for “clearcutting” (deforestation) plays in 

laundering wood from illegal selective logging (CONDÉ et al. 2019). The clearcutting 

projects are licensed by the State Foundation for the Environment and Water 

Resources (FEMARH) upon the written request of the land owner. 

The vast majority of the vegetation in the study area is dense ombrophilous 

forest (BARNI et al. 2016; NOGUEIRA et al. 2015). Due to the high humidity of the 

forest understory, this type of vegetation is normally resistant to the spread of fire. 

However, during the 2015/16 El Niño event, about 1800 km2 of forests burned in the 

southern portion of Roraima (BARNI et al. 2018b). It is suspected that selective logging, 

along with fire from new deforestation and from management of existing pastures and 

agricultural fields, is responsible for much of the spread of fire in the region (e.g., 

BRANDO et al. 2014; FONSECA-MORELLO et al. 2017). 

Considering the average polygon size simulated annually by the model (9.7 ± 

12.5 ha) and the average polygon size detected by PRODES (12.6 ± 17.6 ha) within the 
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grid of sub-areas (n = 9), a significant difference was observed only in sub-area SUB-A6 

(p <0.01). In this sub-area, the average size of the simulated polygons was 9.6 ± 2.5 ha, 

while the average size of polygons detected by PRODES was 18.9 ± 5.6 ha, or almost 

twice as large as the simulated polygons. Sub-area SUB-A6 includes a new settlement 

project (~700 km2) that was in the process of opening lots (SOARES-FILHO et al. 2013) 

via clearcutting authorizations. This settlement had unusually large lots, and, because 

FEMARH releases up to 20% of the lot area to be felled, it is likely that this factor 

contributed to the occurrence of larger deforestation polygons, and therefore to the fact 

that they were detected by the PRODES system in this sub-area. 

The settlement in question with lots of 500 to 1000 ha was created to meet the 

demands of logging entrepreneurs and other business owners living in the municipal 

seat of Rorainópolis (BARNI et al. 2018a, p. 168). This contrasts with other settlement 

projects in the southern portion of Roraima where, in general, lot sizes have ranged 

from 50 to 100 ha, and the lots were distributed to landless farmers (BARNI et al. 2012; 

YANAI et al. 2017). 

The sizes of the deforested polygons that were simulated by the model and that 

are registered in the PRODES data were evaluated separately for each year (n = 7) in 

each sub-area (n = 9). In this case, a significant difference between the deforestation 

polygons was only observed in 2017 (Difference between polygons = 66.8; p = 0.0001); 

in 2017 the average polygon size was 6.5 ± 2.4 ha for simulated deforestation and 14.7 

± 5.6 ha for polygons detected by PRODES (Figure 6). 
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Figure 6. Comparison of polygon sizes (ha) within the grid of sub-areas in each year evaluated.  

In other words, the real polygons of deforestation were 2.3 times larger than the 

simulated ones, thus corroborating the conclusion that deforestation in this sub-area 

(SUB-A8) was being carried out in larger polygons due to the state government’s 

release of clearcutting projects to facilitate selective logging (e.g., ROSA et al. 2012). 

However, part of the explanation for having larger polygons in the PRODES data than in 

simulated data is due to the fact that PRODES only considers polygons ≥ 6.25 ha in 

area, while the simulation considered polygons ≥ 1 ha in area. 

Figure 7 exemplifies the situation discussed above, showing deforestation in 

2017 in a settlement project that had been recently opened to meet the demands of 

businesspeople in Rorainópolis (BARNI et al. 2018a). Note that the size of the 

deforestation polygons detected by the PRODES system far exceeds the area of the 

polygons simulated by the model. 
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Figure 7. Visual comparison between simulated deforestation polygons (black) and observed in 2017 
(yellow) by PRODES in a part of the SUB-A6 sub-area where a settlement project with unusually large 
lots had been recently opened. 

 
Similarity assessment in the SAU 
 

The results of the similarity tests (%) between the annual deforestation scenarios 

and the PRODES data for the SAU registered the overall mean of 46.4% in a 3900 x 

3900-m window (39 x 39 cells). The annual scenario that showed the greatest similarity 

with the PRODES data was that of 2013 with 55.2%, and the lowest was that of 2017, 

with 24.0% similarity in a 3900 x 3900-m window (Figure 8). 

The result for 2017 positively influenced the mean similarity of the scenarios 

below the limit value of 50.0%, together with the years 2012 (42.3%), 2016 (48.0%) and 

2015 (49.0%), while the years 2013, 2011 (54.5%) and 2014 (52.0%) registered values 

above this value. With the exception of 2012 and the inversion observed between the 

values for 2013 and 2011, the results agree with the data of Rosa et al. (2015). 

Studying the calibration / validation response (accuracy of predictions) of land-use 

change models according to the choice of the time period used in this phase, these 

authors observed that the closer or shorter the interval used for the calibration / 

validation of models the better was their performance. In other words, the longer the 

interval used, the less accurate the models were in predicting future deforestation. 

Although the reciprocal similarity comparison test in our study was truncated in a 

39 x 39-cell window, in contrast to the 19 x 19-cell window used in the Soares-Filho et 

al. (2013) study, we can consider that our results were similar to these. This is due to 

the spatial resolution used by the two studies. The study by Soares-Filho et al. (2013) 

used a 250-m spatial resolution, making the area of their cells 6.25 ha, or 6.25 times 



20 
 

larger than those in our study. The 250-m spatial resolution in the Soares-Filho et al. 

(2013) study meant that their 19 x 19-cell window measured 4750 x 4750 m, or 2256 

ha, which is 48.3% larger than the 1521-ha (3900 x 3900-m) window in our study. 

However, a factor that must be considered and that does not allow valid 

comparisons of similarity between the models is the fact that the results of Soares-Filho 

et al. (2013) were based on the comparison of simulated scenarios in just three 

iterations in the training or calibration / validation phase (e.g., ROSA et al. 2015). While 

the scenarios evaluated in our study were taken from the results of the simulation itself, 

after the calibration / validation phase. In other words, the 2017 scenario, for example, 

was "far" from 2010, the year that was used in the calibration of our model (ROSA et al. 

2015). 

y  
Figure 8. Similarity test between scenarios for the SUA and PRODES data. 

 
The overall mean similarity achieved by each annual scenario, within each sub-

area in a 3900 x 3900-m window, was 48.9%. The lowest similarity recorded was 4.0%, 

which was in sub-area SUB-A1 in 2017, and the highest (91.9%) was in e SUB-A5 in 

2014. SUB-A1 showed the greatest variability in the annual scenarios (SD = 26.7%), 

followed by SUB-A5 (SD = 26.3%), with the least variability being found in SUB-A7 (SD 

= 7.1%). The mean variability was 16.1% (Table 2; Figure 9). 
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Table 2. Similarity values (%) achieved by each scenario in each sub-area with a 3900 × 3900-m window. 
SD is the standard deviation of the sample (%). 

Area/Year 2011 2012 2013 2014 2015 2016 2017 Mean SD 

SUB-A1 44.3 37.1 68.2 47.0 25.0 85.0 4.0 44.4 26.7 
SUB-A2 68.9 39.4 60.0 67.9 57.8 41.9 14.3 50.0 19.5 
SUB-A3 41.3 44.5 61.4 61.1 33.8 56.3 17.9 45.2 16.0 
SUB-A4 63.8 54.2 56.0 49.0 44.0 46.6 23.8 48.2 12.6 
SUB-A5 47.5 6.0 52.9 91.9 48.9 41.2 26.5 45.0 26.3 
SUB-A6 48.4 31.0 47.4 48.6 64.5 53.7 43.8 48.2 10.1 
SUB-A7 70.1 58.2 51.3 51.9 54.1 55.3 48.2 55.6 7.1 
SUB-A8 68.3 25.2 37.3 54.5 66.9 68.9 57.3 54.1 16.9 
SUB-A9 44.4 53.4 54.9 45.1 45.0 65.2 36.5 49.2 9.4 
Mean 55.2 38.8 54.4 57.4 48.9 57.1 30.3 48.9 16.1 
SD 12.2 16.5 8.9 14.8 13.7 14.1 17.4 - 14.0 
 

 

 
Figure 9. Similarity behavior in the annual scenarios in each sub-area. 

When the data matrix is inverted (Table 2), the 2017 scenario shows the greatest 

variability (SD = 17.4%), followed by the 2012 scenario (SD = 16.5%). The mean 

deviation was 14.0% considering all scenarios (Figure 10). 
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Figure 10. Similarity behavior of the sub-areas in each annual scenario. 

In Figure 10 it can be seen that the 2017 scenario increases the similarity starting 

from the north (SUB-A1) to the south (SUB-A8). The opposite behavior can be seen in 

the 2013 scenario, in which the similarity decreases considering the same direction of 

growth as in the 2017 scenario. 

 

Correlation analysis 
 

Correlation analysis was used to test whether the deforested area (ha), the 

frequency of polygons (n) and the size of the average polygon (ha) deforested in each 

sub-area influenced the similarity in each scenario within the sub-areas (Table 3). 
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Table 3. Result of the correlation analysis applied between the similarity values (%) and the values for 
“deforested area” (ha), “frequency” (n) and “polygon size” (ha). 

SUB-AREA  Deforestation (ha) Frequency (n) Polygon size (ha) 
  Scenario PRODES Scenario PRODES Scenario PRODES 

SUB-A1-SIM 0.5557 -0.3283 0.5355 -0.6315 0.5561 0.2266 
SUB-A2-SIM 0.8002 0.1076 0.8370 0.6227 0.6498 0.0997 
SUB-A3-SIM 0.7072 0.7236 0.8472 0.8050 0.4930 -0.4451 
SUB-A4-SIM -0.1546 0.1914 -0.6379 0.0856 0.6478 0.0564 
SUB-A5-SIM 0.0239 0.2991 0.1753 0.3246 -0.1897 -0.3319 
SUB-A6-SIM 0.2087 0.0556 0.6702 0.5431 -0.3644 -0.8640 
SUB-A7-SIM -0.1998 0.3601 -0.4276 0.2472 0.4250 0.2358 
SUB-A8-SIM -0.1801 0.0703 0.7512 0.6253 -0.4817 -0.7318 
SUB-A9-SIM 0.5008 0.5637 0.2839 0.7619 0.3257 -0.8020 

* Values in bold indicate high correlation (r> 0.4900) between the variables analyzed. 

 

The results indicate that the frequency or number of polygons provided by the 

simulation of the scenarios and also from the PRODES data, in the sub-areas, 

contributed more strongly to the similarity than did the other variables. Even so, the 

variable “deforested area,” for example, showed a strong correlation with similarity in 

sub-areas SUB-A1, SUB-A2, SUB-A3 and SUB-A9. 

Most of the results showed a strong positive correlation of the variables with the 

similarity observed in the sub-areas. However, five cases of strong negative correlation 

were observed for the “frequency” variable (2 cases: SUB-A1 and SUB-A4) and the 

“polygon size” variable (3 cases: SUB-A6, SUB-A8 and SUB-A9). 

Considering the “frequency” variable, the strong inverse correlation observed in 

SUB-A4 is explained by the large number of polygons (n = 435) generated by the 

simulation model compared to the low frequency of polygons (n = 213) detected by 

PRODES. The same occurred in SUB-A1, but the reverse occurred in SUB-A4, the 

PRODES detection frequency (n = 346) being higher than the frequency generated by 

the model (n = 137). Therefore, in these two cases, the results indicate that the number 

of polygons negatively influenced the similarity between the simulated maps and the 

maps of actual deforestation. 
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Considering the variable “polygon size,” the highest mean sizes of the 

deforestation polygons detected by PRODES in 2014 (14.3 ha) and 2017 (14.7 ha) 

versus the smaller mean sizes of simulated polygons in the scenarios (11.6 ha for 2014 

and 6.5 ha for 2017) may have inversely influenced the similarity in the sub-areas. In 

this case, the larger size of the polygons detected by the PRODES system in these 

years implied less similarity between the simulated scenarios and the real data in sub-

areas SUB-A6, SUB-A8 and SUB-A9. 

 
4. FINAL CONSIDERATIONS 

 

The lessons learned from the approach applied in our study suggest that the 

behavior of deforestation is not linear and that it can change depending on time (from 

one year to the next) and space (from one location to another). This is consistent with 

the idea that the occurrence of deforestation in different parts of the study area in the 

period was favored by road construction, creation of settlement projects, cumulative 

previous deforestation close to roads and proximity to urban consumer centers 

(SOARES-FILHO et al. 2004; BARNI et al. 2015b; ROSA et al. 2015).  

The problem of divergence between the simulated deforestation results and the 

real or official deforestation that occurred in some sub-areas of the study area, shown 

by the similarity tests, does not jeopardize the validity of the scenario analysis. These 

divergences are difficult to predict and can often be related to the origin and culture of 

the landholders, who base their decision to deforest or not to deforest an area on the 

basis of market behavior (RODRIGUES et al. 2009; FEARNSIDE 2017). 

Considering these issues, the probability of deforestation in our study area was 

increased by the creation of settlement projects for large landholders and by invasions 

of public lands (government areas “without destination”). The creation of settlement 

projects for large landholders and the action of land grabbers (grileiros), for example, 

opened thousands of hectares of untouched forests as areas for speculation in the real 

estate market, then to the selective logging market and finally to the meat market 

ending (FEARNSIDE 2017). This process may take several years to stabilize the 

cumulative deforested area in the properties, which, by law, can deforest a maximum of 
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20% of the lot area. During this time the area is transformed into a zone “producing” 

deforestation. The process can be accelerated with the arrival of loggers who open 

roads for landholders in exchange for permission to remove timber from the lots. 

Despite the divergences pointed out above between deforestation simulated in 

the scenarios and official PRODES deforestation, in general the evaluations 

demonstrated the validity of the model and the ability of future scenarios to realistically 

represent the deforestation that occurred in the study area, considering the clearing 

from 2011 to 2017. The correlation analysis, for example, offered excellent inputs for the 

simulation model calibration phase. Prioritizing the frequency (n) and the mean polygon 

size (ha) of deforestation during the calibration phase of a simulation model can 

substantially improve the model’s performance. 
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Supplementary material  
SIMULATED DEFORESTATION VERSUS SATELLITE DATA IN RORAIMA, NORTHERN AMAZONIA 

 
Appendix 1. Sub-areas in the SAU grid with areas (km2) for each PRODES land-cover class (Mainclass) up to 2017.  

  SUB-A1 SUB-A2 SUB-A3 SUB-A4 SUB-A5 SUB-A6 SUB-A7 SUB-A8 SUB-A9 Total % 
Original area  4,502.7 6,026.6 5,990.0 9,086.0 2,436.6 7,782.7 5,644.0 7,925.8 4,477.1 53,871.4 100.0 

% 45.0 60.3 59.9 90.9 24.4 77.8 56.4 79.3 44.8 - - 
Forest  3,589.7 3,419.7 2,904.1 3,956.6 1,304.5 4,311.0 3,692.0 3,744.7 2,752.4 29,674.7 55.1 

% 79.7 56.7 48.5 43.5 53.5 55.4 65.4 47.2 61.5 - - 
Water 0.0 34.3 1.9 137.3 0.0 27.6 0.0 19.4 9.3 229.7 0.4 

% 0.0 0.6 0.0 1.5 0.0 0.4 0.0 0.2 0.2  - - 
Non-forest 262.8 206.8 93.6 385.0 821.1 2,178.9 681.5 3,009.7 0.0 7,639.4 14.2 

% 5.8 3.4 1.6 4.2 33.7 28.0 12.1 38.0 0.0 -  - 
Deforestation 171.9 1,050.6 1,428.9 2,526.5 222.4 942.8 1,032.9 782.4 1,244.7 9,403.2 17.5 

% 3.8 17.4 23.9 27.8 9.1 12.1 18.3 9.9 27.8  - - 
Cloud 422.4 1,297.0 1,543.4 2,060.7 80.8 310.4 232.7 360.3 457.4 6,765.1 12.6 

% 9.4 21.5 25.8 22.7 3.3 4.0 4.1 4.5 10.2 -  - 
Residual 3.3 18.2 17.9 19.9 3.0 12.0 4.8 9.3 13.3 101.8 0.2 

% 0.1 0.3 0.3 0.2 0.1 0.2 0.1 0.1 0.3 -  - 
Total in 

vectorized 
dataset 

4,450.1 6,026.6 5,989.9 9,086.0 2,431.8 7,782.6 5,644.0 7,925.7 4,477.1 53,813.8 99.9 

Difference* 52,5 0,1 0,0 0,0 4,8 0,0 0,1 0,0 0,0 57,6 0,1 
* Area lost in crossing the vector layers (Intersection of the SAU with the grid) 
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