This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

98918730346c61b99aae322f52e4f861035633fd72bb000d10987d9200db7182

To view the reconstructed contents, please SCROLL DOWN to next page.

The text that follows is a PREPRINT. O texto que segue é um PREPRINT.

Please cite as: Favor citar como:

> Barni, P.E., A.C.M. Rego, F.C.F. Silva, R.A.S. Lopes. H.A.M. Xaud, M.R. Xaud, R.I.
> Barbosa & P.M. Fearnside 2021. Logging Amazon forest increased the severity and spread of fires during the 2015-2016 El Niño. Forest Ecology and Management 500: art. 119652. https://doi.org/10.1016/j.foreco.2021.119652

ISSN: 0378-1127 DOI: 10.1016/j.foreco.2021.119652 Copyright: Elsevier

The original publication is available at: O trabalho original está disponível em:

https://doi.org/10.1016/j.foreco.2021.119652

http://www.sciencedirect.com/science/journal/03781127

Logging Amazon forest increased the severity and spread of fires during the 2015-2016 El Niño

Paulo Eduardo Barni¹ Anelícia Cleide Martins Rego² Francisco das Chagas Ferreira Silva² Richard Anderson Silva Lopes³ Haron Abrahim Magalhães Xaud⁴ Maristela Ramalho Xaud⁴ Reinaldo Imbrozio Barbosa⁵ Philip Martin Fearnside^{6,7*}

¹ Universidade Estadual de Roraima – UERR, *Campus* Rorainópolis Av. Senador Helio Campos, s/n°, 69375-000, Rorainópolis, Roraima, Brazil. pbarni@uerr.edu.br

² Universidade Estadual de Roraima – UERR, *Campus* Rorainópolis Av. Senador Helio Campos, s/n°, 69375-000, Rorainópolis, Roraima, Brazil. {anelycia.com@gmail.com; chagasferreirasilva@gmail.com}

³ Corpo de Bombeiros Militares de Roraima, Coordenação Estadual de Proteção e Defesa Civil. Avenida Venezuela, 1271, 69309690 - Boa Vista, Roraima, Brazil. {raslopes@gmail.com}

⁴ Empresa Brasileira de Pesquisa Agropecuária – Embrapa/RR. Rodovia BR 174, Km 8, Distrito Industrial. 69301-970, Boa Vista, Roraima, Brazil. {haron.xaud@embrapa.br; maristela.xaud@embrapa.br}

⁵ Instituto Nacional de Pesquisas da Amazônia (INPA), Rua Coronel Pinto, 315. 69301-150. Boa Vista, Roraima, Brazil. reinaldo@inpa.gov.br

⁶ Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936. 69067-375, Manaus, Amazonas, Brazil. pmfearn@inpa.gov.br

 ⁷ Brazilian Research Network on Global Climate Change – Rede Clima, Av. dos Astronautas, 1758 - Jardim da Granja, São José dos Campos - SP, 12227-010, Brazil
 * Corresponding author

Logging Amazon forest increased the severity and spread of fires during the 2015-2016 El Niño

3

4 Abstract. Forest fires degrade Amazon forest and its natural functions. Logging, 5 deforestation and the increased frequency of prolonged droughts have contributed to 6 the high recurrence of forest fires in the Amazon. Fires have impacted areas that, until 7 recently, were considered immune to fire, such as the southern portion of the Brazilian 8 state of Roraima, which is characterized by forest types that occur in environments 9 with high natural humidity but that are now strongly impacted by selective logging 10 (SL). The objective of this study was to determine the severity and spread of fire in the 11 forests of southern Roraima, taking as a reference the great forest fire that occurred 12 during the 2015-2016 El Niño. We mapped fire scars and forest biomass from remote 13 sensing and data from forest inventories in a 6657.3 km² study area, of which 6512.4 km² (97.8%) had originally been forest and 5412.3 km² (81.3%) was still forest in 14 2016. The 2015/2016 fires affected an estimated at 682.2 km², or 12.6% of the area 15 16 that was still forest in 2016. Vulnerability maps of the forest were made using the 17 weights-of-evidence method. The biomass impacted by fire totaled 26.4×10^6 Mg, representing 9.5% of the total mapped for the study area (277.4×10^6 Mg). The 18 19 biomass killed by the fire totaled 5.8×10^6 Mg, representing 22.0% of the biomass 20 affected by the fires. The highest level of fire severity (very strong) proportionally 21 affected 84.6% more forest biomass inside than outside SL areas. Forest vulnerability 22 to fires increased by 265.5% in terms of area and by 400.7% in terms of biomass when 23 exposed to SL. Logging also increased the severity of fires when they occurred: a 24 hectare of burned forest was 85.9% more likely to have a "very strong" fire if it had 25 been previously logged, and burned areas that had been logged lost, on average, 2.9% 26 more of their pre-fire biomass to the fire than those that had not been logged (86.5 Mg 27 ha⁻¹ versus 84.0 Mg ha⁻¹). Considering only the ombrophilous forest, the mean biomass of forest that was logged and burned was 310.7 Mg ha⁻¹, or 30.8% lower than 28 the mean biomass of 448.7 Mg ha⁻¹ in logged but unburned areas, showing a 29 30 substantial biomass loss to fire (average of 138.0 Mg ha⁻¹). SL more than doubled the 31 impact of fire on biomass loss as compared to the impact of the logging itself. In 32 addition to its contribution to carbon emissions and other impacts, the amplifying 33 effect of SL on forest fires indicates that the assumption that authorized forest 34 management projects in Amazonia are sustainable is unwarranted. The future role of 35 this practice should be rethought, existing projects should be subject to close 36 inspection and control, and unauthorized logging should be identified and repressed. 37 The policy of allowing sale of wood from clearcutting projects should be rethought 38 because it provides a loophole for laundering wood from illegal logging. 39 40 Keywords: Environmental modeling; land use; land cover; Remote sensing; Amazon 41

42 **1. Introduction**

Forest fires are a threat to the integrity and biodiversity of forests (McLauchlan et
al., 2020), and to the Amazon forest's carbon storage and hydrological cycling
functions (da Silva et al., 2018; Fearnside, 2008; Fearnside et al., 2013; Rappaport et
al., 2018; Ziccardi et al., 2019). The ignition sources of forest fires in the Amazon are

the result of human actions, such as burning in nearby newly cleared forest or for
pasture maintenance or for slash-and-burn family farming, while selective logging
plays an important role in making the forest vulnerable to the entry and propagation of

50 fire (Alencar et al., 2006; Aragão and Shimabukuro, 2010; Berenguer et al., 2014;

51 Brando et al., 2014, 2019; Uhl and Buschbacher, 1985; Xaud et al., 2013). SL has

52 been indicated as one of the factors for the spread of forest fires even in places that are

53 distant from the main foci of deforestation (Alencar et al., 2015; Broadbent et al.,

54 2008; Hethcoat et al., 2020; Silva et al., 2018).

55 Prolonged drought events driven by the increasing frequency of severe El Niño 56 events have a direct effect on the spread of forest fires in the Amazon (Aragão et al., 57 2018; Jiménez-Muñhoz et al., 2016; Meira-Junior et al., 2020; Nepstad et al., 2004, 58 2007), as do the effects of changes in land use and cover and predatory logging 59 (Brando et al., 2014, 2019). The frequency of forest fires has increased in areas that 60 (until recently) were considered immune to fire due to the natural humidity of the forest; however, the factors that attenuate or amplify fire occurrence are still little 61 studied (Barni et al., 2015a; da Silva et al., 2018; Fonseca et al., 2017; Turubanova et 62 63 al., 2018).

64 The Amazon provides essential environmental services (e.g., Fearnside, 2008), 65 and conserving these requires understanding of the interactions between climatic 66 phenomena and human activities and their effects on the degradation of forest biomass. Systematic mapping is one of the remote-sensing tools of great importance 67 68 for the understanding the spatial distribution and the spreading behavior of forest fires 69 and it is an intelligent way to provide input for the improvement of public policies to 70 combat the indiscriminate use of fire. Systematic mapping can provide estimates of 71 greenhouse-gas (GHG) emissions on a large scale and contribute to improving the 72 calculations representing biomass and carbon affected by fire and deforestation 73 (Aragão et al., 2018; Baccini et al., 2012). Brazil's current National Inventory of GHG 74 Emissions (Brazil, MCTI, 2020) does not consider emissions from understory forest 75 fires when calculating emissions from land-use change and forestry. This fact persists, 76 in part, due to the small volume of work carried out in this area of knowledge and the 77 large uncertainties involved in calculating the emission factors.

Several spectral indices have been developed or adapted to improve the mapping
of burned areas: NDVI, SAVI, EVI, EVI2, GEMI, BAI, BAIM, NBR, NBR2, CSI and
MIRBI (Bastarrika et al., 2011; Chuvieco et al., 2002; Stropianna et al., 2012). New
approaches based on spectral mixture analysis (SMA) and image fractions (Quintano
et al., 2006) are useful for mapping burned areas. Canopy damage by selective logging
and fire, including their severity (capacity to damage the forest), have been
successfully mapped using the Normalized Difference Fraction Index (NDFI) (Souza

85 Jr. et al., 2005a, 2013).

Halting or greatly reducing deforestation would clearly have a substantial benefit in avoiding forest fires because the burning of felled trees in newly cleared areas is a major source of ignition for fire in adjacent forests. Note that the forest is not intentionally set on fire, but rather fire escapes from nearby areas that are being burned either as part of the initial clearing or in subsequent management of the agricultural and ranching systems.

92 One of the great challenges we currently face is a better understanding of the 93 relationship between deforestation behavior and the application of efficient public 94 policies (West and Fearnside, 2021). Policies are also needed to help change the 95 practices used in agriculture and ranching (which today are still based on fire) to the 96 use of technologies that allow the incorporation into the soil of the biomass of second 97 growth cut to prepare forest for planting and in the maintenance of pastures free of 98 invading woody vegetation. However, implementation of these systems has proved to 99 be difficult in the Amazon because these alternatives to fire demand increased 90 production costs.

101 In the southern portion of Brazil's state of Roraima (in northern Amazonia), 102 deforestation is strongly stimulated by both legal and illegal logging (Barni et al., 103 2020). In this region, authorizations to use wood from areas being deforested in 104 projects licensed for clearcutting by Roraima's State Foundation for the Environment 105 and Water Resources (FEMARH) provide the documentation for most of the "legal" logs delivered to sawmills. However, much of the wood that theoretically comes from 106 107 the areas approved for clearcutting or for forest management does not actually come 108 from these areas, but rather from selective logging in forests that are not authorized for 109 either activity. For example, based on a questionnaire applied to 38% of the sawmills 110 in Rorainópolis in 2013, Crivelli et al. (2017) reported that 54% of the wood volume 111 came from deforestation projects, 11% from forest-management projects, and for 35% 112 of the wood the sawmill owners were "unable to specify" the source.

113 The great majority of requests to FEMARH from landowners for deforestation 114 authorizations are merely a means to legalize the sale of timber, rather than for the 115 stated purpose of clearing land for agriculture and pasture. This is clearly shown by 116 the fact that most of the 12,480.9 ha of deforestation authorized by FEMARH in southern Roraima between 2010 and 2015, only 26.2% was actually deforested, as 117 118 shown by our mapping based on data from INPE's PRODES program (Brazil, INPE, 119 2020). If the authorized areas are, in fact, deforested, they are logged before the 120 deforestation is done; if these areas are not in fact deforested, the logging is done, and 121 the unharvested trees are left standing. The volume harvested in the authorized areas is 122 less than the authorized amount. It is reasonable to suppose that this is because, given 123 the lack of inspections, it is more profitable for the loggers to cut trees of the most-124 valuable species in a wider area of forest than it is to harvest the permitted volume 125 only within the authorized area, where part of the harvest would be composed of less-126 valuable species.

127 In January 2021 the municipality (county) of Rorainópolis (in southern Roraima) 128 was added to the federal "blacklist" of priority locations for actions to prevent, 129 monitor and control deforestation in the Amazon (Oliveira, 2021). Logging in this area 130 has only minimal control, and, due to insufficient staff, FEMARH, does not make field inspections to verify that the specified limits and procedures are respected. The lack of 131 132 inspections at the sites undergoing logging or deforestation does not mean that all parts of the production chain are free of influence from regulations. The federal 133 134 environmental agency (the Brazilian Institute for the Environment and Renewable 135 Natural Resources, or IBAMA) occasionally inspects sawmills to see if the amount of 136 wood present is compatible with the documentation. In 2018 such an inspection in 137 Rorainópolis found that virtually none of the sawmills were in compliance, and the 138 sawmills were shut down (G1, 2018a). Note that 2018 was after the 2015-2016 El 139 Niño fires that are the subject of the current study and was before the Jair Bolsonaro

presidential administration began in January 2019, with a notable relaxation ofenvironmental controls and gutting of IBAMA (see Ferrante and Fearnside, 2019).

142 Logging is not done by the owners of the land, but instead is done either by 143 logging teams working for sawmills or by independent loggers who pay a landowner 144 to allow the timber to be harvested and sold to sawmills. There is clearly no 145 motivation for sustainability, and those doing the logging may also invade adjacent 146 properties or government land to remove additional timber. Inspection is limited to 147 visits to sawmills to check if the volume of stockpiled wood is compatible with the maximum amounts specified in the licenses. Logging trucks are occasionally stopped 148 149 by IBAMA to check the permit for transporting timber (the "document of forest 150 origin," or DOF), but if a truck is not stopped the transport permit is often reused 151 multiple times (Barni and Silva, 2017).

152 Throughout Brazilian Amazonia the permits issued for transporting timber from 153 authorized forest-management projects are frequently used in the same way as those 154 for deforestation projects, with the volume for which the permits are issued coming, in 155 reality, from logging in other areas, including indigenous lands and other protected 156 areas where logging is forbidden (Brancalion et al., 2018). Regardless of any official 157 authorization for "sustainable" forest management in rural properties in our study area, 158 the actual implementation of such practices was "null or incipient" at the time of our 159 study (Gimenez et al., 2015).

160 The present case study aims to determine the effects of SL on the severity and 161 spread of understory fire in southern Roraima considering the mega forest fire that 162 occurred in this part of the Amazon during the El Niño event of 2015-2016 (Fonseca 163 et al., 2017). Areas "affected" by forest fire are areas where an understory fire 164 occurred during the 2015-2016 El Niño as indicated by burned litter and charring at 165 the base of trees. Our hypothesis is that SL favored an increase in the severity of fire and its spread (increased area affected by fire, both by the increased sizes of the fire 166 167 scars and by increased number of scars) both within the logged areas and in 168 neighboring unlogged areas, contributing to greater exposure of forest biomass to fire. 169 The specific questions the study addresses are: (i) What was the extent of the area 170 affected by fires and the amount of forest biomass lost in the study area considering 171 four levels of fire severity? (ii) What was the proportional contribution of SL in 172 spreading the fire? (iii) What was the area of the exposed forest and what was the 173 magnitude of forest biomass vulnerable to new forest fires in the study area?

174 To answer question (i) we used a geographic information system (GIS) and 175 geoprocessing tools, combined with inventory data, to assess the loss of forest biomass 176 at four levels of fire severity as defined by Fernandes-Manso et al. (2016) in areas with 177 signs of SL and in areas without signs of SL. To answer questions (ii) and (iii) we used 178 the weights-of-evidence method (Barni et al., 2015b, 2020; Soares-Filho et al., 2006; 179 Leite-Filho et al., 2021). Maps of weights-of-evidence have the ability to capture the 180 influence of variables that are spatially related to the occurrence of forest fire 181 (Silvestrini et al., 2011).

Our study will provide improvements for understanding the relationship between
the severity of fire and previous disturbance by SL. Among the uses for this
information is improvement of carbon-emission calculations due to forest degradation
in the Amazon (e.g., Brazil, MCTI, 2020).

4

187 2. Materials and Methods

188 2.1 Study area

189 The study area is located in the southern portion of the state of Roraima, covering 190 the areas that include the seat of the municipality (county) of Rorainópolis and the 191 towns (vilas) of Colina and Equador. The area also includes small parts of the 192 municipalities of Caracaraí (90.5 km², 1.4% of the study area) and São Luiz (164.2 193 km², 2.5%) (Table S1 in the Supplementary Material). The area includes 130.6 km of 194 Highway BR-174 and 1249.4 km of secondary roads in the settlement projects and 195 their surroundings (Figure 1). The study area, which comprises 6657.3 km^2 , was 196 delimited by clipping a Landsat 8 image for 9 June 2016 (row 231, path 60) and 197 intersecting it with part of scenes 20NQG and 20NQF of the vector grid of the 198 Sentinel-2 satellite (https://www.instrutorgis.com.br/download-da-grade-do-satelite-199 sentinel2/). The vegetation cover is composed of dense rain forest (in its vast 200 majority), in addition to mosaics of *campinarana* (oligotrophic woody vegetation) and 201 ecotone areas between *campinarana* and dense rain forest (Barni et al., 2016). Under 202 the Köppen classification system, the region's climate is Af (equatorial forest climate) 203 (Alvares et al., 2014).

204 205 206 207

Figure 1. (A) Map of South America showing the state of Roraima. (B) Municipalities and the location of the study area. (C) Detailed map of the study area.

208 2.2 Databases

The database consisted of 1.) A vector grid from the Sentinel-2 satellite (which was used to delimit the study area), 2.) Landsat 5 and 8 images from 2010 to 2016 for path/row 231/60, obtained from the US Geological Survey (USGS, 2016) (which were

used to map the dynamics of SL and fire) 3.) A Shuttle Radar Topography Mission
(SRTM) image (USGS, 2016) (which served to represent the altitude and the slope in

- the study area), 4.) A vector map of forest types (Brazil, PROBIO, 2013), 5.) A map of
- deforestation and non-forest obtained from PRODES (Brazil, INPE, 2020), 6.) A
- 216 vector map of forest fires (Barni et al., 2017) (used to represent the burned area), 7). A
- map of total forest biomass (live + dead and above + belowground) in Roraima (Barni
 et al., 2016) (used to estimate biomass loss and affect by fire), 8.) Vector maps of
 roads and rivers, 9.) A vector map of hot spots between 1 December 2015 and 23
- 220 March 2016 from the AQUA-MT reference satellite
- 221 (http://queimadas.dgi.inpe.br/queimadas/bdqueimadas/) (used to represent the initial
- scenario of fires in the study area using the weights-of-evidence method), 10.) Forest
- inventory data on observed fire and tree mortality in 17 transects measuring 4×250 m
- (1.7 ha) at the locations of fires that occurred in the study area during the 2015/2016
- El Niño event (Table S2) (used to estimate the biomass loss at the plot level).

For the processing of variables (maps), analyses were performed using the
Quantum Gis (QGis) Desktop 2.18.15 (https://www.qgis.org/) geographical
information system (GIS). Maps 2 to 9 (except map 7) and products derived from
these have been used for analyzes with the weights-of-evidence method (Barni et al.,
2015b, 2020; Soares-Filho et al., 2006; Leite-Filho et al., 2021) in Dinamica-EGO 5.0
software (https://csr.ufmg.br/dinamica/). Statistical analyses were performed using R
version 3.6.0 software (https://www.r-project.org/).

The database included information on authorizations for logging (authorized area in ha and volume in m³) in the area licensed for "alternative land use" (deforestation) from 2010 to 2015 (Table S3); the database also included information on "Sustainable Forest Management Plans" from 2017 to 2020 (Table S4), which were used to support the analyses. These data were provided by the State Foundation for the Environment

and Water Resources (FEMARH) under the technical collaboration agreement

- 239 001/2020 between FEMARH and the State University of Roraima (UERR). The
- 240 methodological sequence for obtaining and analyzing the data followed the flowchart

in Figure 2.

242

243 Figure 2. Flowchart of the methodology applied in the study area to obtain and analyze the data. SL = selective logging; NDVI = normalized difference vegetation 244 245 index. WEM = weights-of-evidence method. Continuous variables (distance map): SL 246 = selective logging, Def= deforestation, SR = secondary roads, BR = BR - 174247 highway, UC = urban centers, PA = protected area and Wat = water. Categorical 248 variables: Veg = vegetation, Slo = slope and Alt = altitude.

250 **2.3 Methods**

251 2.3.1 Fire severity

252 Assessment of the severity of the fire consuming the combustible material and 253 killing a fraction of the living forest biomass above and below ground was conducted 254 according to the technique recommended by Fernándes-Manso et al. (2016), using 255 vegetation indices, including the normalized difference vegetation index (NDVI). In

256 this approach, the NDVI values were extracted from the Landsat 8 image for 9 June 257 2016 (231/60) corresponding to the burned forest in the study area, and discrimination 258 was made among four increasing levels of fire severity: light, moderate, strong and 259 very strong (Table 1). The break points of the classification intervals for NDVI values were set automatically by the software (Jenks natural breaks: Dent, 1990; Slocum, 260 261 1999) in five classes, with the fifth class (-1 to 0.2246) corresponding to pixels with 262 spurious values, which were excluded from the analysis. In the study by Fernándes-263 Manso et al. (2016), based on visual interpretation of images from the Pleiades-1A/1B sensor, the 'light' class corresponded to minor or insignificant damage from the fire 264 265 scar; the 'moderate' class corresponded to a moderately damaged area; the 'strong' 266 severity level corresponded to a highly damaged area and; the 'very strong' severity level corresponded to an area totally destroyed by fire. Although the study by 267 Fernandes-Manso et al. (2016) was carried out in a region of Spain dominated by 268 269 *Pinus pinaster* Ait and *Quercus pyrenaica* Wild, which is a type of a vegetation 270 completely different from that in the Amazon, it is important to highlight that in our study we only used the nomenclature for fire-severity classes based on these authors, 271 272 corresponding to the classes for separation of the NDVI values obtained in our study 273 area. Our choice was based on the familiarity with the use of NDVI and the evaluation 274 of various vegetation indexes carried out by Fernandes-Manso et al. (2016). These 275 authors indicated that the NDVI achieved scores similar to that of the normalized burn 276 ratio (NBR) in a Cox and Snell pseudo-R² test (0.430 and 0.450) and in a McFadden 277 pseudo-R² test (0.289 and 0.247) for NDVI and NBR respectively. In our study, NDVI 278 was highly correlated with NBR (Figure S1 and S2; Table S5).

279 280

Table 1. Increasing levels of fire severity observed in the study area.

Level	Class	NDVI (this study)	* NDVI						
0	Light	0.4082 to 0.6031	0.5840 to 0.6195						
1	Moderate	0.3641 to 0.4081	0.5225 to 0.5700						
2	Strong	0.3140 to 0.3640	0.4095 to 0.4495						
3	Very strong	0.2247 to 0.3139	0.2267 to 0.2637						
* Values	* Values estimated from Fernándes-Manso et al. (2016).								

²⁸¹ 282 283

2.3.2 Estimation of biomass loss by fire-severity class

284 We used tree mortality or biomass-loss levels (inventory data) to numerically 285 define these classes and associate them with the corresponding severity levels. To 286 estimate biomass loss by fire-severity class, we used loss fractions of forest biomass 287 (Mg ha⁻¹) derived from the database for the forest inventory in the 17 transects (4 \times 288 250 m: 1.7 ha) carried out between 11 March and 6 April 2016 for trees with DBH \geq 289 10 cm. In the 17 plots (14 plots with SL and three plots without SL), 1180 individuals (694 individuals ha⁻¹) were inventoried, of which 239 individuals (20.3%) had been 290 killed by fire. Trees that were considered to have been "killed" were observed in the 291 292 field (1-3 months after the fires) and judged to be dead based on lack of leaves, 293 appearance of the bark and signs of severe damage from the fire. The percentages for 294 estimating biomass loss in trees with $DBH \ge 10$ cm were derived from the forest-295 inventory data. The 10.4% loss percentage represented by the aboveground dead 296 biomass (litter) and the 2.4% aboveground biomass loss in dead trees with DBH < 10 297 cm were derived from the study by Barbosa and Fearnside (1999) (Table 2).

298
299 Table 2. Fractions of biomass loss from fire used in the GIS raster calculator for calculations
300 of biomass loss by fire severity class.

Severity	Litter	DBH <10	DBH ≥10	Loss fraction
U		cm	cm	
Light	0.104	0.024	0.022	0.150
Moderate	0.104	0.024	0.074	0.202
Strong	0.104	0.024	0.151	0.279
Very strong	0.104	0.024	0.329	0.457

³⁰¹

302 The volume is converted to biomass using the average basic density of 0.770 of 303 the 11 species that contributed the most wood volume to nine sawmills surveyed in 304 2013 in Rorainópolis by Crivelli et al. (2017), based on basic density values from 305 Fearnside (1997), Nogueira et al. (2005) and Silveira et al. (2013), weighted by their 306 respective percentages of the volume processed by the sawmills (Table S6). "Basic 307 density" of wood is oven-dried mass divided by saturated volume. A calculation is 308 made of the biomass removed in the harvested logs, together with the loss of 309 aboveground live biomass in the crowns and stumps of the harvested trees and in 310 collateral damage to unharvested trees caused by the logging operations 311 (Supplementary Material, Section 1.7: Table S7). The biomass lost (35.67 Mg ha⁻¹), 312 when divided by the average total biomass value (435.3 Mg ha⁻¹) of the dense ombrophilous forest in the study area (Barni et al., 2016), results in a loss fraction of 313 314 0.082. In this approach it is assumed that the SL had already been removed this 315 fraction of the biomass, and the fraction is therefore applied as a constant regardless of 316 the fire-severity class.

317 To derive these loss percentages and assign the biomass values corresponding to 318 each severity class, the DBH ≥ 10 cm information on the inventoried trees (1180 319 individuals) was converted into aboveground dry biomass according to the model ln 320 $(P) = \beta 0 + \beta 1 \ln (DBH) + \varepsilon$, proposed by Higuchi et al. (1998), where P is the fresh 321 weight (kg⁻¹) of the biomass, $\beta 0$ (-1.497) and $\beta 1$ (2.548) represent the regression parameters (intercept and slope), ln is the natural logarithm and ε is the random error. 322 323 Values for fresh biomass (kg ha⁻¹) were converted to dry biomass (Mg ha⁻¹) based on 324 the mean water content of 40% found by Higuchi et al. (1998) (Table S2).

In order to represent the fire-damage classes overlapping the inventory transects, a 15-m buffer was created around the length of each transect. Next, the fire-severity class values were extracted from a raster file intersecting the buffer areas (Figure 3A); the average percentages were attributed for the biomass loss corresponding to each class indicated in the pixels, which were estimated by the model, and the total biomass was calculated for the 17 transects (Figure 3B).

331

332 333 Figure 3. (A) Levels of fire severity along a plot inventoried in the field and (B) 334 corresponding rates (fractions) of biomass loss. Equal letters = not significant; * = significant at 5%; *** = significant at 0.1% statistical probability.

2.3.3 Biomass of fire-affected areas by forest type 337

338 The biomass (Mg ha⁻¹) affected by the fires in each vegetation type was calculated 339 using the biomass map prepared by Barni et al. (2016) in a grid-cell (raster) format. 340 This biomass estimate was based on bole volumes of individual trees ≥ 31.8 cm DBH 341 surveyed by the RADAMBRASIL project (Brazil, RADAMBRASIL, 1973-1983) in 342 298 1-ha plots (of which 119 were in Roraima and the remainder within 100 km of the 343 state's borders). Volumes were converted dry biomass based on the wood basic 344 density by species from Fearnside (1997), and adjustments for crowns, small trees, 345 hollow trees, irregular trunks and other components were based on Nogueira et al. 346 (2008).

347 Initially the biomass map was intersected with the forest-typology map, also in 348 raster format, and the study area was cut out. The study area contained three 349 vegetation types: Dense ombrophilous forest (DS), Campinarana (Ld) and Ecotones 350 (LO). Note: the two-letter vegetation codes are those used by the Brazilian Institute for 351 Geography and Statistics (IBGE). The biomass map for the study area was intersected 352 with the forest-fire raster map (value=1). These map-algebra operations were 353 performed using the raster calculator in the GIS. The same procedure was carried out 354 to calculate the biomass loss caused by deforestation up to 2016 (Brazil, INPE, 2020). 355

356 2.3.4 Characterization of selective logging in the study area

To characterize SL in terms of the area that was logged and affected by understory 357 358 forest fires in the entire study area, a systematic mapping of timber activity in the region was carried out between 2007 and 2015 using 16 satellite images (path/row 359 360 231/59 and 231/60) from Landsat 5 (2007 to 2011) and Landsat 8 (from 2013 to 2015) (Table S8 and Figure S3). For this purpose, RGB and NDVI images were interpreted 361 362 visually, proceeding to manual editing in vector files of the SL areas in each image, as 363 in Barni et al. (2015a) (Supplementary material: Section 1.8). As a way of assessing 364 the influence of SL on the spread of fire and on the severity classes in the study area, 365 tests were carried out to compare the NDVI values from 2016 with the NDVI values 366 of the images from 2010, 2013, 2014 and 2015 at the same geographical coordinates in

areas affected by fires and with a history of SL. Additionally, analyses of fire severity
 were carried out according to the year of selective logging occurrence (Table S9).

369

370 2.3.5 Fire-vulnerability map with weights-of-evidence method

371 The map of the forest's vulnerability to fire was obtained from the calculation of 372 the transition-probability map using the weights-of-evidence method (Supplementary material: Figures S4, S5 and S6). This method stores information as numerical values 373 374 that are spatially referenced (x and y coordinates) representing the contribution 375 (evidence) of each variable in favoring or inhibiting the occurrence of the event under 376 study (in our case, fire), based on the occurrence of this event in the past. In other words, the weights-of-evidence method has the ability to capture the influence of a set 377 378 of variables related to the spatial occurrence of a given event in the past and use that 379 evidence (weights-of-evidence coefficients) to build a spatial-probability map for the 380 occurrence of the event in question. This ability has often been exploited in simulating 381 future deforestation and forest-fire scenarios in the Amazon (Barni et al., 2015b, 2020; 382 Leite-Filho et al., 2021; Silvestrini et al., 2011; Soares-Filho et al., 2006).

383 For the preparation of the vulnerability map of the forest to understory forest fires, 384 a methodological sequence was used that involved the preparation of initial and final 385 scenario maps in Dinamica-EGO software. First, a land-use map was prepared with 386 the value classes (1) Deforested, (2) Forest and (3) Fire. The latter consists of 216 hot 387 spots detected in the study area by the AQUA-MT satellite between 1 December 2015 388 and 23 March 2016 (the time window when fire occurrences intensified in the study 389 area), transformed into pixels, representing the fire class (value=3) before the spread 390 of the fire (initial scenario). Second, a land-use map was prepared with the same 391 classes, but with the fire class applied to all of the fire spread detected in the study area 392 in 2016 (final scenario), which was obtained from the mapping carried out by Barni et 393 al. (2017) (Figure 4).

394 395

Figure 4. Input scenarios for the method of calculating the weights-of-evidence using 396 Dinamica-EGO software. (A) 2015-2016 Scenario (initial map) prepared with hot spots 397 between 1 December 2015 and 23 March 2016. (B) Scenario in 2016 (final map) after the 398 occurrence of fires in the region.

400 Twelve maps were created with the same number of columns and rows. Seven of 401 the maps were for environmental variables: (1) forest (vegetation), (2) deforestation, 402 (3) fire, (4) SL, (5) SL class year (area of polygons of SL mapped each year), (6) 403 hydrography (water courses), (7) relief and (8) slope. Four maps were for 404 infrastructure: (9) urban centers, (10) secondary roads, (11) BR-174 and (12) protected 405 areas (Indigenous Lands + conservation units). This step also involves the creation of 406 maps of distance-intervals (ranges) to fire scars for eight continuous variables and 407 creation of class intervals for the other four variables (vegetation, altitude, slope and 408 SL class year), which are considered to be categorical. The mapped variables (as a 409 data stack) served as inputs for calculating the weights-of-evidence coefficients 410 (Figures S3 and S4) using Dinamica-EGO software.

411 In addition to these initial procedures, a transition matrix was also calculated, 412 which is an array of the rates that the software uses to perform the transitions of pixels 413 between states. For example, a pixel representing forest (value=2) at time t_1 can 414 convert to a pixel representing fire (value=3) at time t_2 , in a simulated scenario. In the 415 simulation model, the transition matrix provides the number of pixels that are ready 416 for the change of state, while the transition probability map directs the change to the 417 areas of greatest probability.

418 Correlation tests were performed to determine the association between variables 419 and to assess their spatial dependence (Bonham-Carter, 1994). Correlations with a 420 value of $r \ge 0.5$ were considered to represent a strong association between the 421 variables (Cohen, 1988). These steps were performed using Dinamica-EGO software 422 (Supplementary Material).

423

424 **2.3.5.1** Assessment of the effect of SL on fire spread

425 It is important to note that fire-severity classes were not considered in assessing 426 the effect of SL on the spread of fire in the forest. To assess fire spread we considered 427 five vulnerability classes that were calculated and mapped using the weights-of-428 evidence method. The following procedures were performed to test the effect of SL on 429 the spread of fire in the study area: 1.) making a transition-probability map using all of 430 the variables in the database; 2.) making a transition-probability map using all of the 431 database variables except for the SL variable; 3.) making a transition-probability map 432 using only database variables with little or no correlation with SL and SL class year 433 and; 4.) making a transition-probability map using only SL and SL class year together 434 with the database variables with little or no correlation with SL. These procedures were also carried out for the variables "deforestation" and "secondary roads," which 435 436 were highly correlated with SL in the study area (Table S10). The sizes (km²) of five 437 classes of vulnerability of the forest to fire were then compared on the maps. The 438 difference (in %) in the size of the area of the class with the greatest vulnerability to 439 fire was calculated by comparing the map made using the set of variables that included 440 both SL and the variables without correlation with SL with the probability map 441 calculated only with the set of variables without correlation with SL. The percentage 442 difference was considered to represent the effect of SL on the spread of fire in the 443 study area. For the purpose of comparison and to serve as a reference in order to 444 support the discussions, the same procedure described above was performed for the 445 variables "deforestation" and "secondary roads." The effects of the variables were also 446 expressed in terms of biomass (Mg) vulnerable to fire in the study area. In this case, 447 only the area in the class with the highest probability of fire was considered for the 448 purpose of applying the biomass calculations in making the comparison between the 449 models.

450

451 **2.3.6 Validation of models**

452 To validate the simulation models, the reciprocal-similarity comparison technique 453 was used (Soares-Filho et al., 2008) based on adaptation of the fuzzy-similarity 454 method and the Kfuzzy method, which is considered to be equivalent to the Kappa 455 statistic and takes into account the fuzziness of both location and category within a cell 456 neighborhood (Hagen, 2003). The method is based on the state of the central cell of 457 each window, observing the similar and divergent states of the cells in its 458 neighborhood (or proximity) as a parameter of comparison between the maps. In this 459 approach, the simulated fire scenario is compared with the 2015-2016 scenario (initial 460 scenario) and with the 2016 scenario (map of fire that actually occurred) using 461 "windows" of different sizes in an exponential decay function (truncated outside of a 462 window size of 11×11 cells) (Figure S7). The exponential decay function records the 463 scores of the comparisons between maps produced with increasing window sizes (3 \times

464 3 pixels, 5×5 pixels, ..., 11×11 pixels), and the test result (%) is returned as a .csv 465 table file (Figure S7). The window acts as a filter covering all of the lines in the raster 466 map to make the comparison (Figure S7). Models are generally considered to be valid 467 for simulation when the similarity value for the maps being compared is $\geq 50\%$ (Barni 468 et al., 2015b, 2020). The tests were carried out in a sub-model of the Dinamica-EGO 469 software (Figure S8).

470

471 **3. Results**

472 **3.1 Areas of occurrence**

473 The area of understory forest fires that occurred in our study area during the 2015-2016 El Niño event totaled 682.2 km², affecting 12.6% of the remaining original 474 475 forest. The cumulative deforestation in 2016 (observed since the 1970s and 1980s) in this region (1102.1 km²) represented 16.6% of the study area and 16.9% of the area 476 477 that was originally forest (Table S11). The cumulative deforestation attributed to the 478 portion of the municipality of Rorainópolis located within the study area represented 479 90.8% of the deforestation observed in the entire municipality up to 2016 (1151.2 km²: 480 Brazil, INPE, 2020) (Table S1).

In the study area, SL mapped between 2007 and 2015 totaled 644.8 km². Of this
SL area, 28.0% (180.7 km²) was also affected by understory forest fire (Table S11 and
Figure S3).

484 **3.2 Estimation of biomass in areas affected by forest fires**

485 The largest amount of biomass affected by the fires $(22.7 \times 10^6 \text{ Mg})$ was under 486 ombrophilous forest (dense rain forest) and the smallest $(0.3 \times 10^6 \text{ Mg})$ was found in 487 ecotone forests (Table S12). The fire scars spread along the BR-174 and its secondary 488 roads from the vicinity of the Rorainópolis municipal seat to an area near Vila 489 Equador (Figure 1).

490 The total biomass affected by fires in our study area was estimated at 26.2×10^{6} 491 Mg, while the biomass affected by fires in the SL area was estimated at 6.7×10^{6} Mg 492 (Table S12). This represents 24.1% of the total biomass in areas subjected to SL, 493 estimated at 27.9×10^{6} Mg. Estimation of forest biomass was performed for each 494 forest type, separating areas of SL and areas without SL are presented in Table S13. 495 Estimates of biomass loss from deforestation until 2016 are presented in Table S14 for 496 in the study area as a whole and separately for each forest type.

497

498 **3.3 Fire-severity gradient area**

499 The most widespread severity level in the study area was the light-intensity class 500 (36.2%), considering areas burned without SL. When considering the same severity 501 level but in areas with SL, the light-intensity class decreased by 27.9% in relation to 502 the area without SL. On the other hand, when considering the highest level of fire 503 severity (very strong) the area under SL shows an increase of 85.9% in terms of 504 incident area of this class in relation to the area without SL (Table 3). This means that, 505 if a hectare of forest burns, it is 85.9% more likely to be a very-strong burn if that 506 hectare had been previously logged.

507

508	
509	

Table 3. Area of severity classes of understory fire without selective logging and with.

	Total		Wo/SL		W/SL		
Severity	Area (km ²)	%	Area (km ²)	%	Area (km²)	%	Difference with SL%
Light	246.5	36.2	195.5	39.1	51.0	28.2	-27.9
Moderate	229.0	33.5	170.6	34.0	58.3	32.3	-5.3
Strong	140.7	20.7	95.5	19.1	45.2	25.0	31.2
Very strong	64.9	9.6	38.8	7.8	26.1	14.5	85.9
Total	681.1	100	500.4	73.5	180.7	26.5	_

W/SL = with selective logging. Wo/SL = without selective logging.

511 512

3.4 Vulnerability of the forest to understory fires in SL areas

513 The assessment of the vulnerability maps showed that SL influenced the spread of 514 fire in the study area during the 2015/2016 El Niño event within the fire-severity 515 classes. Analyses of NDVI images show a positive correlation between fires and the 516 logging carried out in years immediately prior to the fires. On the other hand, this 517 effect was not observed when comparing the NDVI values of the images of locations 518 that had been subjected to SL in 2010 with the NDVI values obtained in the same places after the 2015/2016 fires (Figure S9). 519

520 These results are confirmed by annual SL data from satellite images (Table S8) 521 and analysis of the distances from the edge of the forest to the locations of the fires 522 and the SL. The largest fire recorded in areas affected by SL (161.2 km²) occurred in 523 the distance range from 0 to 1200 m, representing 89.3% of the total spread of fire 524 (180.5 km^2) in the area with SL. The years that contributed most to the area of SL 525 were 2013, 2014 and 2015, providing the SL-disturbed area through which the fires 526 crossed and spread to neighboring areas (Figure 5A). Beginning in 2011 there is a 527 strong inversion of the severity classes, with locations with more-recent SL burning 528 with greater severity in the 2015/2016 fires (Figure 5B, Table S9).

529 530

531

532

533

Figure 5. (A) Annual contribution of areas impacted by SL that were burned during the 2015/2016 El Niño event in the study area. (B) Gradient of fire severity depending on the year of logging.

534 3.5 Estimation of biomass loss by fire-severity class

The biomass affected by forest fires totaled 26.4×10^6 Mg (Table 4), with the 535 biomass in the fire-affected SL areas totaling 6.7×10^6 Mg (25.4 of the fire-affected 536

- highest severity level ("very strong") affected, proportionally, 84.6% (14.4 versus 7.8)
- 539 more biomass in SL areas than outside of these areas (Table 4).
- 540 **Table 4.** Estimated biomass affected by fire for each fire-severity class considering all forest
- 541 types.
- 542

Severity	Area	Wo/SL		Area	W/SL		SL		Total
	(12)	(106	% of	(12)	(10 ⁶	% of	(10 ⁶	% of	(10 ⁶
	(KIII ⁻)	Mg)	biomass	(KIII ⁻)	Mg)	biomass	Mg)	biomass	Mg)
Light	195.5	7.5	38.1	51.1	1.9	28.2	0.17	28.3	9.4
Moderate	170.6	6.8	34.6	58.3	2.2	32.3	0.19	32.4	9.0
Strong	95.5	3.9	19.5	45.2	1.7	25.2	0.15	25.2	5.6
Very strong	38.8	1.5	7.8	26.1	1.0	14.4	0.09	14.4	2.5
Total	500.4	19.8	100.0	180.7	6.7	100.0	0.6	100.0	26.4

543 W/SL = with selective logging. Wo/SL = without selective logging.

544

The largest amount of biomass killed by fires $(1.8 \times 10^6 \text{ Mg}; \text{mean } 79.1 \text{ Mg ha}^{-1})$ was in the "moderate-loss" class, representing 30.8% of the total estimated biomass. The smallest amount of biomass $(1.1 \times 10^6 \text{ Mg}; \text{mean } 176.3 \text{ Mg ha}^{-1})$ was in the class with the highest fire severity, representing 19.5% of the total biomass killed by the

548 with the highest fire severity, representing 19.5% of the total biomass killed 1 549 fires. Considering the level of greatest severity, the loss in the SL areas was,

proportionally, 68.3% greater than in the areas without SL (27.6% versus 16.4%,

551 respectively) (Table 5

552

553

554 Table 5. Estimation of biomass killed by fire for each fire-severity class considering all forest

555 types.

	Wo/SL				W/SL		Total			
Severity	Biomass (10 ⁶ Mg)	%	Mean (Mg ha ⁻¹)	Biomass (10 ⁶ Mg)	%	Mean (Mg ha ⁻¹)	Biomass (10 ⁶ Mg)	%	Mean (Mg ha ⁻¹)	
Light	1.1	26.5	58.1	0.3	17.8	55.7	1.4	24.2	57.6	
Moderate	1.4	32.0	80.3	0.4	27.5	75.5	1.8	30.8	79.1	
Strong	1.1	25.0	111.8	0.5	29.5	104.6	1.5	26.2	109.5	
Very strong	0.7	16.4	181.1	0.4	27.6	169.3	1.1	19.5	176.3	
Dead	4.3	21.7	84.1	1.6	23.9	92.6	5.9	22.3	86.4	
Affected	19.7	7.9	-	6.7	24.3	-	26.4	9.5	387.6	
Total	249.8	90.1	_	27.6	9.9	_	277.4	100.0	_	

556

557 558 W/SL = with selective logging. Wo/SL = without selective logging.

559 An increase in biomass loss with increasing fire severity is apparent, and the loss 560 is greater at each intensity of fire if the area had been subjected to SL. If one considers only omprophilous forest, which represents 78.1% of the area affected by fire and 561 562 87.8% of the logged area, the differences between logged versus unlogged areas are significant Kruskal-Wallis test, p < 0.05) (Figure 6). If all forest types are considered, 563 the data suggest the same pattern but the added variation from forest-type effects 564

565 makes the difference statistically nonsignificant (Figure S-13).

Figure 6. Biomass loss (Mg ha⁻¹) by fire severity class considering areas without SL (Wo/SL)
 and areas with SL (W/SL) in the study area.

571 **3.6 Calculation of the weights-of-evidence coefficients**

566

569 570

572 Of the 12 variables used to calculate the coefficients of the WEs, six showed a 573 strong correlation between them (r ≥ 0.5). The highest correlation was between 574 cumulative deforestation in the study area and secondary roads, with r = 0.86, and the 575 second-highest value was between SL areas with secondary roads, with r = 0.78 (Table 576 S10). Theoretically, this means that these variables are overlapping in the model and would explain, basically, the same things. When two variables are correlated, it is 577 578 recommended that one of them be removed from the prediction model, with the 579 variable that remains being the one that is more consistent with the conceptual or 580 theoretical model of the phenomenon to be modeled or predicted (Soares-Filho et al., 581 2008).

582 The SL variable (a continuous variable) had the highest value for the weights-of-583 evidence coefficient (W = +1.15 to 0.99) between 0 to 480 m away from the fires, and 584 this coefficient decreased to a value close to zero at ~2000 m. Similar behavior was 585 also observed for the variables "secondary roads" (W = +0.68 to 0.83) and 586 "deforestation" (W = +0.44 to 1.06) in the first 480 m from the areas affected by fires 587 (Figure 7). These distances were expressed as intervals of 120 m in the Dinamica-588 EGO software and are compatible with the 30-m pixel size of the Landsat 8 image and 589 of the weights-of-evidence maps of the variables used in the study. The response or 590 dependent variable "fire" had the highest weights-of-evidence coefficients. These 591 values indicate a high probability of transition from forest pixels (value=2) located 592 close to the edges of the forest (value=1) to pixels representing burned areas (value=3) on the simulated or modeled map. Note that most of the variables strongly repel the
transition of pixels located from ~2500 to 5000 m, with the weights-of-evidence
coefficients having values less than zero.

597 598 599

600

601

Figure 7. Coefficient of the weights-of-evidence (W^+ or W^-) for seven variables that explain the occurrence of forest fires (dependent variable) in the study area. The distance is subdivided into multiple intervals of 120 m.

602 The behavior of the weights-of-evidence coefficients of SL (and of other variables 603 correlated with SL) shown in Figure 8 can be explained by the heavy fragmentation of the forest in the study area. For example, on both sides of Highway BR-174 there are 604 605 secondary roads and cumulative deforestation adjacent to these roads (both inside and outside of settlement projects). The roads fragment the forest at regular intervals of 2 606 607 to 4 km, depending on the degree of deforestation at each site. The sizes of the forest fragments limited the weights-of-evidence (W⁺) of the main variables that explain the 608 609 behavior of fire in the study area at distances between 1000 and 2000 m from the edge 610 of the fire scars in the forest (Figure 7).

611 Corroborating these results, the areas affected by forest fires and SL gradually decreased in successive 120-m intervals from the edge of the forest up to a distance of 612 1200 m. The first interval (0 to 120 m) had the largest area affected by fire (114.9 km²; 613 614 20.1%) and also had the largest area affected by SL (113.8 km²; 24.3%). Considering the entire range of 1200 m from the edge of the forest, the area burned totaled 571.7 615 km² (83.9% of the 682.2 km²), SL areas totaled 468.8 km² (72.7% of the 644.8 km²) 616 and the SL areas in areas affected by fire totaled 161.2 km², or 89.4% of the 180.4 km² 617 618 total (irrespective of distance: Table S15) burned in the SL areas (Figure 8A; Table 619 S15). The ratio of the area affected by SL to the area affected by fire (SL / Fire) showed a continuous growth beginning with the second distance interval (121-240 m 620 from the forest edge) up to a distance of 1200 m (Figure 8B). The SL area affected by 621 622 fire as a percentage of the SL area as a whole (SL x Fire / SL) had behavior opposite to 623 that of SL / Fire; that is, the areas of occurrence decreased with increasing distance

from the edge of the forest. In turn, the area of SL affected by fire as a percentage of
the area burned as a whole (SL x Fire / Fire) showed a more stable behavior when
compared to the other variables, with 20.6% in the first interval, increasing to 26.5%
in the second interval, and stabilizing at 31.1% (on average) from the third to the last
interval (360 to 1200 m).

629 These results indicate a strong influence of SL on the spread of the fire in the 630 study area, especially as exemplified by SL / Fire and SL x Fire / Fire (Figure 8B). 631 Although this analysis includes only the variable SL, all other variables were also 632 exposed to the same environmental context in the study area. The values of the 633 weights-of-evidence calculated for each distance range of the variables contained in the 634 models ensure the statistical independence of the results (Bonham-Carter, 1994).

635

636

Figure 8. Fire and SL behavior as functions of distance from the forest edge (in 120-m intervals). (**A**) Areas (km²). (**B**) Interaction between fire and SL (%). Fire = Area affected by fire; SL = Area of SL; SL x Fire = Area of SL affected by fir; SL / Fire = Ratio of the area affected by SL to the area affected by fire; SL x Fire / SL = The SL area affected by fire as a percentage of the SL area as a whole; SL x Fire / Fire = Area of SL affected by fire as a percentage of the area burned as a whole.

643

644 **3.7 Model-validation results**

645 The models were validated in windows that ranged in size from one pixel (30 m) 646 to seven pixels (210 m). The average similarity observed in these windows, 647 considering all models, was 63.3%. The map using all variables in the model obtained 648 the greatest similarity between the modeled maps and the fire observed in 2016, 649 reaching 50% similarity in a ~70-m window. On the other hand, the worst 650 performance was by the map from the model that used only the variables that were not 651 correlated, reaching 50% similarity in a ~112-m window. The other three models had approximately the same performance, with results between the two extremes and 652 reaching 50% similarity in a window of ~80-m (Figure S10). 653

654

655 **3.8 Vulnerability of the forest to understory fires by probability range**

Considering ranges of vulnerability to the occurrence of forest fires in the
probability map, areas vulnerable to fire increased by 266.2% in the range with the
highest vulnerability when SL and SL class year were present, as compared to the

reference model (Figure S11). Likewise, when the probability map was modeled with

660 the presence of secondary roads, the area of greatest vulnerability to fire increased by 661 360.4% compared to the reference model (Figure 9; Table S16).

662

663 664 665

666

Figure 9. Percentage of vulnerability of the forest as a function of the ranges of probability (0.1) of fire occurrence in the study area.

All of the vulnerability maps had the class with the lowest probability of fire 667 668 (0.0004 to 0.1488) as the most representative area in the modeling. This can be explained simply by the fact that these areas are relatively far from the sources of 669 670 ignition by human action and, therefore, would be naturally protected. This can be clearly seen in continuous blocks of forest on both sides of Highway BR-174 in the 671 672 map calculated with the entire set of variables (areas south of Vila Colina in the southcentral part of the map) (Figure 10A). To a lesser extent it can also be seen in Figure 673 674 10C. On the other hand, the map considered as a reference, which represented fires 675 calculated by the model composed of three explanatory variables not correlated with 676 the SL (altitude, slope, and vegetation) (Figure 10B), showed these blocks of forest as 677 vulnerable to fire. This effect can be explained by the absence of protected areas in the 678 model's data set. Because the protected areas were correlated with SL, this effect was less evident in the calculated map containing SL in the data set. The maps of 679 vulnerability to fires calculated with the variables "secondary roads" and 680 681 "deforestation" are shown in Figure S12.

683

Figure 10. Maps of vulnerability of the forest to understory fire. In (A) forest vulnerability map calculated with the entire set of variables (n = 12). In (B) vulnerability map calculated from a set of three variables (altitude, vegetation and slope) that are not correlated with SL (reference model). In (C) forest vulnerability map calculated from the variables not correlated with SL and plus the SL and SL class year variables. The legend below the figure shows the ranges of probability [0.1] of the forest being affected by fires.

690

691 The exposure of forest biomass to fires in the study area was 457.2% higher when 692 considering the variable "cumulative deforestation" compared to the reference model 693 (Figure 10B), while SL and SL class year exposed 407.0 % more forest biomass when 694 compared to the reference model. This percentage (400.7 %) can be considered to represent the effect of SL on the spread of fire in the study area. The variable 695 696 "secondary roads" exposed 591.2% more biomass to fire than the reference model 697 (Figure 11). Likewise, SL and SL class year exposed 266.2% more forest area to the 698 range with the highest risk of vulnerability compared to the reference map, while 699 deforestation exposed 9.0% more area than SL. Back roads exposed 360.4% more 700 forest area than the reference map (Figure S11). 701

Figure 11. Biomass vulnerable to understory forest fires in the study area.

3.9 Effect of logging on biomass losses due to fire

707The biomass losses in burned areas are summarized in Table 6, indicating a total loss of708 5.22×10^6 Mg of biomass stock due to fire. In the burned areas the percentage of biomass lost709is 23.2% in areas that had been selectively logged, and 21.6% in areas without selective710logging.711

712 The effects of selective logging on losses to fire are calculated in Table 7. The effect of 713 logging in increasing the area burned resulted in 1.22×10^6 Mg of biomass loss due to fire 714 (Column G), while the effect of selective logging in increasing the severity of fire and 715 resulting per-hectare biomass loss in the area that would have burned anyway even without 716 logging represents 1.25×10^6 Mg of biomass loss (Column M). As compared to the biomass 717 loss from the logging itself (including collateral damage) of 1.69×10^6 Mg of biomass, the 718 effect of logging on increasing the area burned increases impact by 72.5% (Column AB), and 719 the increased fire severity increases the total fire impact to 146.5% (Column AD), that is, more 720 than doubling the impact of the logging itself.

721 722

Table 6. Summary of biomass losses in burned areas

	Original	Original forest S			SL loss A			Affected by fire		Loss to fire	
	(unlogged	d and unbur	ned)								
	Area	Biomass stock	Biomass per hectare	Percent of original biomass	Biomass stock	Biomass per hectare	Biomass stock	Biomass per hectare	Biomass stock	Biomass per hectare	Percent affected biomass
	(km ²)	(10 ⁶ Mg)	(Mg ha ⁻¹)	(%)	(10 ⁶ Mg)	(Mg ha ⁻¹)	(10 ⁶ Mg)	(Mg ha ⁻¹)	(10 ⁶ Mg)	(Mg ha ⁻¹)	(%)
Burned areas with SL in ombrophilous forest Burned areas without SL in ombrophilous	152.3	6.63	435.1	8.2	0.54	35.7	6.08	399.4	1.48	97.2	24.3
forest	380.3	16.60	436.5	0	0	0	16.60	436.5	3.58	94.2	21.6
Total in ombrophilous forest	532.6	23.23	436.1	2.3	0.54	35.7	22.68	425.9	5.06	95.1	22.3
Burned areas with SL in campinarana	28.3	0.71	250.7	8.2	0.06	20.6	0.65	230.1	0.16	56.0	24.3
Burned areas without SL in campinarana	111.7	2.87	256.8	0	0	0	2.87	256.8	0.63	56.1	21.8
Total in campinarana	140.0	3.58	255.6	1.6	0.06	20.6	3.52	251.4	0.78	56.1	22.3
Burned areas with SL in ecotone forest	1.2	0.04	333.3	8.2	0.0033	27.3	0.04	306.0	0.07	86.3	28.2
Burned areas without SL in ecotone forest	8.1	0.30	370.4	0	0	0	0.26	321.0	0.06	69.8	21.6
Total in ecotone forest	9.3	0.30	323.3	0	0	0	0.30	319.8	0.13	70.1	22.1
Burned areas with SL in all forest types	180.6	7.34	406.2	8.2	0.60	33.3	6.73	372.9	1.64	90.8	24.3
Burned areas without SL in all forest types	501.3	19.77	394.4	0	0	0	19.47	388.4	4.21	84.0	21.6
Total in all forest types	681.9	27.10	397.5	2.2	0.60	33.3	26.20	384.3	5.85	85.8	22.3

	Α	В	С	D	Е	F	G	Н	Ι
Forest type	Total area burned (km ²)	Area burned w/SL (km ²)	Area burned that would have remained unburned w/oSL (km ²)	Average post- logging biomass in area w/SL (Mg ha ⁻¹)	Fraction killed by fire W/SL	Average biomass killed by fire in burned area that would have remained unburned w/o SL (Mg ha ⁻¹)	Total biomass killed by fire in burned area that would have remained unburned (10 ⁶ Mg)	Fraction killed by fire Wo/SL	Area that Would have burned if there had been no SL in areas that had SL (km ²)
Source	Table 6	Table 6	B - I	Table 4	Table 5	$\mathbf{D} imes \mathbf{E}$	$\begin{array}{c} C \times 100 \\ \times \ F / 10^6 \end{array}$	Table 6	B - C
Ombrophilous	532.7	152.3		399.6	0.232	92.6		0.216	
Campinarana	140.0	28.3		230.3	0.232	53.4		0.218	
Ecotone	9.3	0		·	·	·		0.194	
All types	681.9	180.6	138.4	384.2	0.232	89.1	1.22	0.216	43.4

Table 7. Effect of logging on area and biomass burned

	J	Κ	L	М	Ν	0	Р	Q	R
	Additional	Average	Total additional	Total	Fraction	Average	Average	Total	Percent
	traction	additional	biomass killed	additional	0İ original	biomass Wo/SI	biomass	biomass	increase of impact
	W/SL as	killed by	W/SL that	killed by	biomass	$(Mg ha^{-1})$	or killed	or killed	of SL
	compared	fire in area	would have	fire due to	removed	τų, το τ	by SL	by SL in	due to
	to Wo/SL	W/SL that	burned w/o SL	SL (10^6)	or killed		(Mg ha ⁻¹)	study	additional
		would have Burned w/o SL (Mg ha ⁻¹)	(10 ⁸ Mg)	Mg)	by SL			Area w/SL (10^6 Mg)	area burned (%)
		(Mg na)							
Source	E - H	$D \times S$	((B-D)×100-T) /10 ⁶	G + U	Section 2.3.2	Table 6	$W \times X$	T×100×Y /10 ⁶	V/Z×100
Ombrophilous	0.016	6.4			0.082	435.0	35.7	0.54	
Campinarana	0.014	3.1			0.082	250.8	20.6	0.06	
Ecotone						360.3		0	
All types	0.016	6.0	0.03	1.25	0.082	395.0	32.3	1.69	74.1

	S	Т	U	V	W	Х
	Total area present (km ²)	Total area logged (km ²)	Total area not logged (km ²)	Total area burned w/SL (km ²)	Total area burned wo/SL (km ²)	Total area burned (km ²)
Source	Table S-13	Section 4.2.2	S - T	Table 6	Table 6	$\mathbf{V} + \mathbf{W}$
Ombrophilous	5,720.8			152.3	380.3	532.7
Campinarana	727.9			28.3	111.7	140.0
Ecotone	63.7			0.0	9.3	9.3
All types	6,512.4	520.5	5,991.9	180.6	501.3	681.9

	Y	Z	AA	AB	AC	AD
	Percent	Percent	Area that would	Loss from	Total	Biomass
	burned of	burned of	have burned in	fire due to	biomass	loss from
	area logged	area not	logged area if	logging	loss from	fire due to
	(%)	logged (%)	unlogged (km ²)	effect on	fire due to	logging as
				burned	logging	% of loss
				area as %	(10^{6} Mg)	from
				of loss		logging
				from		(%)
				logging		
				(%)		
Source	V/T ×100	W/U ×100	Z/100×AJ	G/Q×100	G + M	AC/Q×100
All types	34.7	8.4	43.5	72.5	2.47	146.5

730

731 **4. Discussion**

732 **4.1 Role of selective logging in increasing fire severity**

In our study, the use of severity classes based on NDVI offered excellent insights 733 734 into the severity of SL practiced in the studied area. Our approach can be considered to 735 be a methodological advance because it can be easily used in calculating GHG 736 emissions to the atmosphere using land-use models, reducing uncertainties, for 737 example at the scale of Landsat pixels. Although it is a simplification for calculations 738 of biomass loss, the use of constant values in our study (Table 2) can be justified by 739 the difficulty (logistics and trained professionals) of obtaining the true parameters for 740 the forest affected by the fires. This explains, in part, why the Brazilian inventories of 741 greenhouse-gas emissions do not yet consider emissions from forest degradation by 742 understory forest fires and selective logging (e.g., Brazil, MCTI, 2020).

The highest occurrences of burned areas and SL in the first distance intervals from the edge are characteristic of the intense fragmentation of the forest caused by human occupation in the study area. This fragmentation increases the contact between the sources of fire ignition (burning of forest biomass from deforestation and in the management of pastures and agricultural fields) and the edge of the forest (Alencar et al., 2006, 2015; Aragão and Shimabukuro, 2010).

749 Estimates of the biomass in areas affected by logging must be adjusted for the 750 amounts of biomass removed by the logging. Logging slash and additional trees killed 751 in the logging operations will remain in the forest as dead biomass (necromass) and 752 the carbon in these components will eventually be emitted to the atmosphere either 753 through burning or decay. An idea of the harvest intensity of the selective logging in 754 the area can be derived from the officially reported volumes processed by sawmills in 755 the municipality: a total of 455,347 m³ over the 2007-2015 period (Brazil, IBGE, 756 2021). Although the part of our study area in Rorainópolis (Table S1) represents only 757 19.1% of the area of the municipality (33,579.7 km²), it represents virtually all of the 758 accessible area of forest outside of protected areas. The concentration of logging 759 pressure in a relatively small space in the municipality may have induced the loggers 760 to exploit these forest resources at high intensity, exposing the forest to greater fire 761 hazard. On the other hand, the concentration of logging in a small area protected the 762 currently inaccessible areas from increased fire risk.

763

764 **4.2 Logging intensities in SL**

Logging in the southern portion of the state is practiced in a manner similar to that practiced in other parts of the Brazilian Amazon (Nepstad et al., 1999). Like other areas in the Amazon, logging in our study area is characterized by exploitation of only a few commercial species, a low yield of sawn wood, deficiency in the application of forest management and widespread illegality in removal of wood from the forest (G1, 2018b; Gimenez et al., 2015; Lentini et al., 2005; Monteiro et al., 2010; Pereira et al., 2010).

The estimate of logging intensity that is needed in order to calculate the biomass present in the logged areas at the time of the 2015-2016 fires requires deduction based on the volume of logs removed and the area we mapped as affected by SL (see Supplementary Material, Section 1.7). Officially, from 2010 to 2015, 350,147.0 m³ of 776 logs were harvested in the municipality of Rorainópolis (Brazil, IBGE, 2021). If we 777 consider that all of this volume of wood was obtained exclusively from our study area, 778 where the areas authorized for deforestation totaled 124.8 km² in the period from 2010 779 to 2015, the average volume removed would be $28.1 \text{ m}^3 \text{ ha}^{-1}$. Although this value is 44.8% higher than the value used in our calculations, in terms of volume (19.4 m^3 ha⁻ 780 ¹), to deduct biomass removed by SL (35.67 Mg ha⁻¹; Supplementary material: Section 781 782 1.8) in areas that were burned and had signs of SL, the generated volume reaches 783 1,009,770 m³ in 520.5 km² of SL polygons ($19.4 \times 520.5 \times 100$) mapped in our study 784 area from 2010 to 2015 (Table S8). This value indicates that there may have been a 785 logging 2.9 times (188.4%) greater than the value officially reported by the loggers 786 (Brazil, IBGE, 2021).

787

788 Authorized forest-management projects provide another basis for comparison. 789 Although FEMARH did not provide data on authorized forest-management plans for 790 our study area before 2016, if we assume that in the period from 2010 to 2015 the 791 same area was authorized annually for management as occurred between 2016 and 792 2019 (1566.6 ha year⁻¹) (i.e., before the substantial increase in authorization in 2020), 793 and we apply the average authorized harvest of 24 m³ ha⁻¹, this implies an annual 794 authorized harvest of 37,597.2 m³ (Table S4). The total volume from deforestation 795 authorizations in the 2010-2015 period (611,674.9 m³; Table S3), plus the assumed 796 forest-management authorizations (225,583.2 m³) total 837,758.1 m³, or 2.4 times the 797 350,147 m³ officially reported as harvested in the municipality in the same period 798 (Brazil, IBGE, 2021). This probably means that the officially reported volume is 799 greatly understated.

800 Considering the 520.5 km^2 of SL area mapped between 2010 and 2015 (Table S8) 801 and, using the same average harvest of 24 m^3 ha⁻¹, the total exploited volume would be 802 1,249,200.0 m³, or ~3.6 times higher than that reported by Brazil, IBGE (2021) for the 803 same time interval. Another important factor to be considered is that only 26.2% 804 (3114.1 ha) of the area authorized for "alternative land use" between 2010 and 2015 805 (12,480.9 ha) was effectively deforested by 2020. These facts hide a serious problem 806 for the timber sector in southern Roraima and explains, in part, why many lumber 807 companies were closed and stopped working after IBAMA inspection operations in 808 Rorainópolis (G1, 2018a) and in the port of Manaus, Amazonas (G1, 2018b). In 809 addition, it supports the supposition that permits for SL in areas released for 810 "alternative land use" (deforestation) are used to launder wood.

811

4.3 Wood laundering as a factor in selective logging and consequent fire

813 While the 2015-2016 El Niño provided ideal climatic conditions for fires (Aragão 814 et al., 2018; Burton et al., 2020; Fonseca et al., 2017; Ray et al., 2005), much of the 815 "blame" for the fires and the damage they caused can be attributed to the roles of SL in 816 increasing the probability of areas being burned and in increasing the damage when 817 burning occurs. The large area of selective logging in our study area appears to be 818 mainly the result of permits from authorized deforestation being used to provide cover 819 for transporting the logs to sawmills (i.e., "laundering" wood) and a lesser amount 820 from authorized forest-management projects.

In our study area logging is done based on the approval of licenses for clearing
 forest for agriculture and pasture. In these projects FEMARH authorizes the sale of a

823 restricted volume of wood, which generally varies between 20 and 100 m³ per ha of authorized clearing (e.g., Barni et al., 2020). These authorizations are often used to 824 825 "launder" wood from illegal logging in nearby forests, including wood from outside of 826 the properties where the clearcutting was licensed (Condé et al., 2019). In these clearcutting projects, the wood is harvested before the forest is cleared, and one to two 827 828 years or more elapse before the remaining trees are cut when the area is deforested for 829 pasture (this is recurrent throughout the southern portion of the state). In this case, the 830 forest contains large clearings resulting from the opening of roads and log-storage 831 yards, with the remaining trees left standing until the end of the logging operation 832 before being cut. The burning of areas that are deforested in clearcutting projects serve 833 as sources of ignition for the spread of fire to the adjacent forest. Logging disturbance 834 can be more serious than the deforestation itself as a force for spreading fire. Under extreme climatic conditions such as the 2015/2016 El Niño event (Burton et al., 2020; 835 836 Fonseca et al., 2017), logged areas become highly vulnerable to fires (Andrade et al., 837 2020; Cochrane et al., 1999; de Faria et al., 2017; Morton et al., 2011; Ziccardi et al., 838 2019). The logged areas serve as "springboards" for fire to gain momentum and spread 839 to adjacent areas, including those without evidence of SL.

This effect of recent logging was shown by the correlation analysis between the incidence of fire and the difference between the NDVI values observed in SL areas carried out in years immediately before the fires and the NDVI values observed in the same places in 2016 (Figure S9). The increasing correlation between these values over time is consistent with the more recently logged areas having greater fire severity (Figure 5B). This corroborates the studies by Souza Jr. et al. (2005a, 2013), who analyzed forest degradation by SL and fire using multitemporal images.

847 **4.4 Vulnerability of the forest to understory fires**

848 The variables that contributed the most to the vulnerability of the forest were, in 849 decreasing order, the distance from secondary roads, the distance from previous or 850 cumulative deforestation and the distance from selective logging. The effects of major 851 and secondary roads on the occurrence of deforestation and forest fires in the Amazon 852 are well known (Barni et al., 2015b; Fonseca et al., 2017, 2019; Silvestrini et al., 2011; 853 Soares-Filho et al., 2006). However, with regard to modeling the risk of forest fire 854 using SL as an explanatory variable in the model, our results are unprecedented and 855 demonstrate the importance of regulating this activity for combating and controlling 856 forest fires in Brazilian Amazonia.

857 Modeling the probability of the occurrence of fires in the study area using the weights-of-evidence method allowed us to produce a vulnerability map of the forest 858 859 (map with all variables) with very high spatial resolution (compatible with the Landsat 860 8 pixel size of 30 m). Providing information for use in risk maps for the occurrence of 861 catastrophic events, such as floods, hurricanes and forest fires, is valuable for planning 862 and for preventing and mitigating the potential impacts these calamities cause to the 863 economic, social and environmental sectors. Increasing the accuracy of models can 864 make them more effective as a basis for public policies to reduce these risks (Ferrier et 865 al., 2016; Fonseca et al., 2017, 2019; Marcelino, 2008). The map of forest 866 vulnerability to fire modeled in this study can serve as a tool for planning preventive measures for combating fires and for mitigating the effects of fire in Roraima (Barbosa 867 868 et al., 2003). The increased vulnerability of selectively logged forest to fire implies

869 that the simple assumption that authorized forest management projects in Amazonia 870 are sustainable is unwarranted. One cannot simply assume that if government 871 regulations on the intensity of logging and other factors in management systems are 872 followed then the system will automatically be sustainable. Unfortunately, fire was not 873 considered in the forest-recovery studies underlying official regulations. Virtually all 874 plans for forest management in Amazonia assume that the managed areas will never 875 burn (see Fearnside, 2003). The falseness of this assumption is central to discussions 876 of the appropriate role of forest management in Amazonian development.

877 The roles of selective logging in facilitating forest fires and increasing their 878 damage mean that SL can have harmful and unpredictable consequences for the 879 structure of the forest (Rappaport et al., 2018). Fires also affect the forest's health, 880 with repercussions for the survival of arboreal individuals in the years following the fires (Andrade et al., 2020; Avila et al., 2018; Trumbore et al., 2015; Watson et al., 881 882 2018; Ziccardi et al., 2019). The increase in fire severity provoked by logging implies 883 direct impacts on greenhouse-gas emissions and global climate (Aragão et al., 2007, 884 Assis et al., 2020, 2018; de Faria et al., 2017; Rappaport et al., 2018; Stark et al., 2020; 885 Trumbore et al., 2015). Fires like these are known to initiate a positive-feedback 886 process, where the fire leaves dead wood in the forest that serves as fuel for the next 887 fire at the time of another extreme drought event, making this and subsequent fires 888 more intense, and this can completely destroy an area of forest after three or four fires 889 (Berenguer et al., 2014; Cochrane et al., 1999; Nepstad et al., 1999). The effect of fire 890 in more than doubling the impact of the logging itself, increasing the impact by 891 146.5%, affects the calculus for forest management. This level of impact is the result 892 of a single fire, and this is only the beginning of the positive feedback process of 893 degradation in a downward spiral of biomass stocks. The large impact of selective 894 logging through the effect on fire should both serve as a warning to policy makers 895 promoting forest management and add urgency to repressing the widespread illegal 896 logging in Amazonia.

897

898 **5. Conclusions**

The methods developed here to estimate the effects of selective logging based on fire-severity classes and the modeling of fire spread based on weights-of-evidence can be used as a tool for creating public policies regarding logging and fire. The results these policies need to be more cautious in promoting forest management and more rigorous in controlling illegal logging, as well as increasing efforts to prevent fires.

904 The selective logging practiced in the southern portion of Roraima contributed 905 significantly to the increase in damage to forest biomass and consequent emission of 906 carbon to the atmosphere, in addition to facilitating the spreading of forest fires and 907 increasing their intensity. If a hectare of forest is burned, the fire intensity is 85.9% 908 more likely to be in the "very strong" category if it had been previously logged. Fire 909 increased the impact of logging on biomass reduction by 146.5% as compared to the 910 impact of the logging itself, thus more than doubling the impact of logging with just 911 one fire. These results cast doubt on the assumption that approved forest-management 912 projects are sustainable on the long term. In addition, the connection of logging 913 disturbance and resulting forest fires to authorized wood sales from areas licensed for

- 914 clearcutting indicates the need for Roraima's environmental agency (FEMARH) to
- 915 revise its policies on the use of wood from forest-clearing projects.
- 916

917 6. Acknowledgments

- 918 A.C.M. Rego participated as a volunteer in the Institutional Program for Scientific
- 919 Initiation Scholarships (PIBIC) of the National Council for Scientific and
- 920 Technological Development (CNPq) in PIBIC Call No. 1/2018 of the project
- 921 "Dynamics of Selective Logging SL in the southern portion of the State of Roraima
- from 2007 to 2018." CNPq also provided fellowships for P.M. Fearnside (Proc.
- 923 311103/2015-4) and R.I. Barbosa (Proc. 304204/2015-3). This paper is a contribution
- 924 of the Brazilian Research Network on Global Climate Change FINEP/ Rede CLIMA
- 925 Grant 01.13.0353-00. We thank the State Foundation for the Environment and Water
- 926 Resources (FEMARH) for providing valuable data on selective logging.
- 927

928 **7. References**

- Alencar, A., Nepstad, D., Diaz, M.D.V., 2006. Forest understory fire in the Brazilian
 Amazon in ENSO and non-ENSO years: Area burned and committed carbon
 emissions. Earth Interactions, 10, art. 6. https://doi.org/10.1175/EI150.1.
- Alencar, A.A., Brando, P.M., Asner, G.P., Putz, F.E., 2015. Landscape fragmentation,
 severe drought and the new Amazon forest fire regime. Ecological Applications,
 25(6), 1493–1505. https://doi.org/10.1890/14-1528.1.
- Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2014.
 Köppen's climate classification map for Brazil. Meteorologische Zeitschrift,
 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507
- Andrade, D.F.C., Ruschel, A.R., Schwartz, G., de Carvalho, J.O.P., Humphries, S.,
 Gama, J.R.V., 2020. Forest resilience to fire in eastern Amazon depends on the
 intensity of prefire disturbance. Forest Ecology and Management, 472, art.
- 941 118258. https://doi.org/10.1016/j.foreco.2020.118258.
- Aragão, L.E.O.C., Malhi, Y., Roman-Cuesta, R.M., Saatchi, S., Anderson, L.O.,
 Shimabukuro, Y.E., 2007. Spatial patterns and fire response of recent Amazonian
 droughts. Geophysical Research Letters, 34(7), art. L07701.
- 945 https://doi.org/10.1029/2006GL028946.
- Aragão, L.E.O.C, Shimabukuro, Y.E. 2010. The incidence of fire in Amazonian
 forests with implications for REDD. Science, 328, 1275-1278.
- 948 https://doi.org/10.1126/science.1186925.
- Aragão, L.E.O.C, Anderson, L.O., Fonseca, M.G., Rosan, T.M., Vedovato, L.B.,
 Wagner, F.H., Silva, C.V.J., Silva Junior, C.H.L., Arai, E., Aguiar, A.P. et al.,
 2018. 21st Century drought-related fires counteract the decline of Amazon
 deforestation carbon emissions. Nature Communications, 9, art. 536.
- 953 https://doi.org/10.1038/s41467-017-02771-y.
- Assis, T.O., Aguiar, A.P.D., von Randow, C., Gomes, D.M.P., Kury, J.N., Ometto,
 J.P.H.B., Nobre, C.A., 2020. CO₂ emissions from forest degradation in Brazilian

- Amazonia. Environmental Research Letters, 15(10), art. 104035.
 https://doi.org/10.1088/1748-9326/ab9cfc.
- Avila, A.L., Schwartz, G., Ruschel, A.R., Silva, J.N.M., de Carvalho, J.O.P., Mazzei,
 L., Soares, M.H.M., Bauhus, J., 2017. Recruitment, growth and recovery of
 commercial tree species over 30 years following logging and thinning in a tropical
 rain forest. Forest Ecology and Management, 385, 225–235.
 https://doi.org/10.1016/j.foreco.2016.11.039.
- Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D.,
 Hackler, J., Beck, P.S.A., Dubayah, R., Friedl, M.A., Samanta S., Houghton, R.A.,
 2012. Estimated carbon dioxide emissions from tropical deforestation improved
 by carbon-density maps. Nature Climate Change, 2, 182–185.
- 967 https://doi.org/10.1038/NCLIMATE1354.
- Barbosa, R.I., Fearnside, P.M., 1999. Incêndios na Amazônia: Estimativa da emissão
 de gases de efeito estufa pela queima de diferentes ecossistemas de Roraima na
 passagem do evento El-Niño (1997/1998). Acta Amazonica, 29(4), 513-534.
 https://doi.org/10.1590/1809-43921999294534.
- Barbosa, R.I., Xaud, M.R., Silva, G.N.F., Cattâneo, A.C., 2003. Forest Fires in
 Roraima, Brazilian Amazonia. International Forest Fire News (IFFN), No. 28, 5156. https://gfmc.online/wp-content/uploads/Brazil-2-1.pdf
- Barlow, J., Peres, C., Lagan, B., Haugaasen, T., 2003. Large tree mortality and the
 decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6–8.
 https://doi.org/10.1046/j.1461-0248.2003.00394.x.
- Barni, P.E., Silva, E.B.R., 2017. Extração seletiva de madeira em Rorainópolis: A
 floresta em perigo. In: Anais da Semana Nacional de Ciência e Tecnologia no
 estado de Roraima: Ciência alimentando Brasil. Universidade Estadual de
 Roraima (UERR), Boa Vista, RR. art. 36103. https://bityl.co/5JbX. Accessed on:
 23 January 2021.
- Barni, P.E., Silva, E.B.R., Silva, F.C.F., 2017. Incêndios florestais de sub-bosque na
 zona de florestas úmidas do sul de Roraima: Área atingida e biomassa morta. In:
 Anais do Simpósio Brasileiro de Sensoriamento Remoto 2017. Campinas, SP,
 Brazil: Galoá, pp. 6280-6287. Available at: https://bityl.co/5JeV. Accessed on: 21
 November 2020.
- Barni, P.E., Pereira, V.B., Manzi, A.O., Barbosa, R.I., 2015a. Deforestation and forest
 fires in Roraima and their relationship with phytoclimatic regions in the northern
 Brazilian Amazon. Environmental Management, 55, 1124–1138.
 https://doi.org/10.1007/s00267-015-0447-7.
- Barni, P.E., Fearnside, P.M., Graça, P.M.L.A., 2015b. Simulating deforestation and
 carbon loss in Amazonia: Impacts in Brazil's Roraima state from reconstructing
 Highway BR-319 (Manaus-Porto Velho). Environmental Management, 55(2),
 259-278. https://doi.org/10.1007/s00267-014-0408-6.
- Barni, P.E., Manzi, A.O., Condé, T.M., Barbosa, R.I., Fearnside, P.M., 2016. Spatial
 distribution of forest biomass in Brazil's state of Roraima, northern Amazonia.

998 Forest Ecology and Management, 377, 170–181. 999 https://doi.org/10.1016/j.foreco.2016.07.010. 1000 Barni, P.E., Barbosa, R.I., Manzi, A.O., Fearnside, P.M., 2020. Simulated 1001 deforestation versus satellite data in Roraima, northern Amazonia, Brazil. 1002 Sustentabilidade em Debate, 11(2), 81-94. 1003 https://doi.org/10.18472/SustDeb.v11n2.2020.27493. 1004 Bastarrika, A., Chuvieco, E., Martín, M.P. 2011. Automatic burned land mapping 1005 from MODIS time series images: assessment in Mediterranean ecosystems. IEEE 1006 Transactions on Geoscience and Remote Sensing, 49(9), 3401-3413. 1007 https://doi.org/10.1109/TGRS.2011.2128327 1008 Berenguer, E., Ferreira, J., Gardner, T.A., Aragão, L.E.O.C., de Camargo, P.B., Cerri, 1009 C.E., Durigan, M., de Oliveira Jr., R.C., Vieira, I.C.G., Barlow, J., 2014. A large-1010 scale field assessment of carbon stocks in human-modified tropical forests. Global 1011 Change Biology, 20(12), 3713–3726. https://doi.org/10.1111/gcb.12627 1012 Bonham-Carter, G., 1994. Geographic Information Systems for Geoscientists: 1013 Modeling with GIS. New York, USA: Pergamon. 398 pp. 1014 Brancalion, P.H.S., de Almeida, D.R.A., Vidal, E., Molin, P.G., Sontag, V.E., Souza, 1015 S.E.X.F., Schulze, M.D. 2018. Fake legal logging in the Brazilian Amazon. 1016 Science Advances, 4, art. eaat1192. https://doi.org/10.1126/sciadv.aat1192 1017 Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., 1018 Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., Alencar, A., Soares-1019 Filho, B.S., 2014. Abrupt increases in Amazonian tree mortality due to droughtfire interactions. Proceedings of the National Academy of Sciences of the USA, 1020 111(17), 6347-6352. https://doi.org/10.1073/pnas.1305499111. 1021 Brando, P.M., Paolucci, L., Ummenhofer, C.C., Ordway, E.M., Hartmann, H., Cattau, 1022 1023 M.E., et al., 2019. Droughts, wildfires, and forest carbon cycling: A pantropical 1024 synthesis. Annual Review of Earth and Planetary Sciences, 47, 555-581. 1025 https://doi.org/10.1146/annurev-earth-082517-010235. 1026 Brazil, IBGE (Instituto Brasileiro de Geografia e Estatística), 2021. Produção da Extração Vegetal e da Silvicultura: Tabela 289. Available at: 1027 1028 https://sidra.ibge.gov.br/Tabela/289. Accessed on: 19 March 2021. 1029 Brazil, INPE (Instituto Nacional de Pesquisas Espaciais), 2020. Projeto PRODES – 1030 Monitoramento da Floresta Amazônica por Satélite. São José dos Campos, SP, 1031 Brazil: INPE. Available at: https://bityl.co/5JeS. Accessed on: 21 November 2020. Brazil, MCTI (Ministério da Ciência, Tecnologia e Inovação), 2020. Estimativas 1032 1033 Anuais de Emissões de Gases de Efeito Estufa no Brasil. Quinta edição. 108 pp., 1034 Available at: https://bityl.co/5JeH. Accessed on: 21 November 2020. 1035 Brazil, PROBio (Projeto da Biodiversidade Brasileira), 2013. Mapas de Cobertura 1036 Vegetal dos Biomas Brasileiros. Available at: https://bityl.co/5JeR. Accessed on: 21 November 2020. 1037

- Brazil, RADAMBRASIL, 1973–1983. Levantamento dos Recursos Naturais (Folhas
 SA.20 Manaus; SA.21 Santarém; SB.19 Juruá; SB.20 Purus; SC.19 Rio Branco;
 SC.20 Porto Velho). Rio de Janeiro, RJ, Brazil: Ministério das Minas e Energia.
- Broadbent, E.N., Asner, G.P., Keller, M., Knapp, D.E., Oliveira, P.J.C., Silva, J.N.,
 2008. Forest fragmentation and edge effects from deforestation and selective
 logging in the Brazilian Amazon. Biological Conservation, 141, 1745-1757.
 https://doi.org/10.1016/j.biocon.2008.04.024
- Burton, C., Betts, R.A., Jones, C.D., Feldpausch, T.R., Cardoso, M., Anderson, L.O.,
 2020. El Niño driven changes in global fire 2015/16. Frontiers in Earth Science, 8,
 1-12. https://doi.org/10.3389/feart.2020.00199.
- 1048 Chuvieco, E., Martín, M.P., Palacios, A. 2002. Assessment of different spectral
 1049 indices in the red-near infrared spectral domain of burned land discrimination.
 1050 International Journal of Remote Sensing, 23, 5103-5110.
 1051 https://doi.org/10.1080/01431160210153129
- 1052 Cochrane, M.A., Alencar, A., Schulze, M., Souza Jr., C., Nepstad, D.C., Lefebvre, P.,
 1053 Davidson, E., 1999. Positive feedbacks in the fire dynamic of closed canopy
 1054 tropical forests. Science, 284, 1832–1835.
 1055 https://doi.org/10.1126/science.284.5421.1832.
- 1056 Cohen, J., 1988. Statistical power analysis for the behavioral sciences. Hillsdale, NJ,
 1057 USA: Erlbaum. Available at:
 1058 http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
 1059 . Accessed on: 2 April 2021.
- 1060 Condé, T.M., Higuchi, N., Lima, A.J.N., 2019. Illegal selective logging and forest 1061 fires in the northern Brazilian Amazon. Forests, 10, art. 61.
- 1062 https://doi.org/10.3390/f10010061.
- 1063 Condé, T.M., Tonini, H., 2013. Fitossociologia de uma Floresta Ombrófila Densa na
 1064 Amazônia Setentrional, Roraima, Brasil. Acta Amazonica, 43, 247–
 1065 260. https://doi.org/10.1590/S0044-59672013000300002
- 1066 Crivelli, B.R.S., Gomes, J.P., Morais, W.W.C., Condé, T.M., Santos, R.L., Bonfim
 1067 Filho, O.S., 2017. Caracterização do setor madeireiro de Rorainópolis, sul de
 1068 Roraima. Revista Ciência da Madeira, 8(3), 142-150.
- 1069 https://doi.org/10.12953/2177-6830/rcm.v8n3p142-150.
- da Silva, S.S., Fearnside, P.M., Graça, P.M.L.A., Brown, I.F., Alencar, A., de Melo,
 A.W.F., 2018. Dynamics of forest fires in the southwestern Amazon. Forest
 Ecology and Management, 424, 312-322.
 https://doi.org/10.1016/j.foreco.2018.04.041.
- de Faria, B.L., Brando, P.M., Macedo, M.N., Panday, P.K., Soares-Filho, B.S., Coe,
 M.T., 2017. Current and future patterns of fire-induced forest degradation in
 Amazonia. Environmental Research Letters, 12(9), 1-13.
 https://doi.org/10.1088/1748-9326/aa69ce.
- 1078 Dent, B.D., Torguson, J., Hodler, T., 1990. Cartography: Thematic Map Design.
 1079 Second edition. Dubuque, IA: William C. Brown. 448 pp.

- 1080 Fearnside, P.M., 1997. Wood density for estimating forest biomass in Brazilian 1081 Amazonia. Forest Ecology and Management, 90(1), 59-89. 1082 https://doi.org/10.1016/S0378-1127(96)03840-6 1083 Fearnside, P.M., 2003. Conservation policy in Brazilian Amazonia: Understanding the 1084 dilemmas. World Development, 31(5), 757-779. https://doi.org/10.1016/S0305-1085 750X(03)00011-1. 1086 Fearnside, P.M., 2008. Amazon forest maintenance as a source of environmental 1087 services. Anais da Academia Brasileira de Ciências, 80, 101-114. 1088 https://doi.org/10.1590/S0001-37652008000100006. 1089 Fearnside, P.M., Barbosa, R.I., Pereira, V.B., 2013. Emissões de gases do efeito estufa 1090 por desmatamento e incêndios florestais em Roraima: Fontes e sumidouros. 1091 Revista Agroambiente On-line, 7, 95-111. https://doi.org/10.18227/1982-1092 8470ragro.v7i1.971. 1093 Fernández-Manso, A., Fernández-Manso, O., Quintano, C., 2016. SENTINEL-2A red-1094 edge spectral indices suitability for discriminating burn severity. International 1095 Journal of Applied Earth Observation and Geoinformation, 50, 170–175. 1096 https://doi.org/10.1016/j.jag.2016.03.005. 1097 Ferrante, L., Fearnside, P.M., 2019. Brazil's new president and "ruralists" threaten 1098 Amazonia's environment, traditional peoples and the global climate. 1099 Environmental Conservation, 46(4), 261-263. 1100 https://doi.org/10.1017/S0376892919000213. 1101 Fonseca, M.G., Anderson, L.O., Arai, E., Shimabukuro, Y.E., Xaud, H.A.M., Xaud, M.R., Madani, N., Wagner, F.H., Aragão, L.E.O.C., 2017. Climatic and 1102 1103 anthropogenic drivers of northern Amazon fires during the 2015-2016 El Niño 1104 event. Ecological Applications, 27(8), 2514-2527. https://doi.org/10.1002/eap.1628. 1105 1106 Fonseca, M.G., Alves, L.M., Aguiar, A.P.D., Arai, E., Anderson, L.O., Rosan, T.M., Shimabukuro, Y.E., Aragão, L.E.O.C., 2019. Effects of climate and land-use 1107 1108 change scenarios on fire probability during the 21st century in the Brazilian 1109 Amazon. Global Change Biology, 25(9), 2931-2946. 1110 https://doi.org/10.1111/gcb.14709. 1111 Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, H.R., Brotons, L., Cheung, W.W.L., Christensen, V., Harhash, K.A., Kabubo-Mariara, 1112 J., Lundquist, C., Obersteiner, M., Pereira, H.M., Peterson, G., Pichs-Madruga, R., 1113 1114 Ravindranath, N., Rondinini C., Wintle B.A. (Eds.), 2016. IPBES: The 1115 methodological assessment report on scenarios and models of biodiversity and 1116 ecosystem services. Bonn, Germany. Secretariat of the Intergovernmental Science-1117 Policy Platform on Biodiversity and Ecosystem Services, 348 pp. 1118 https://ipbes.net/assessment-reports/scenarios. 1119 G1, 2018a. Protesto contra fechamento de madeireiras interdita rodovia em
- 1120 Rorainópolis, Sul de RR. Available at: https://bityl.co/7EMh. Accessed on: 26
 1121 January 2021.

- G1, 2018b. PF faz operação de combate à exploração ilícita de madeira da Amazônia.
 Available at: https://bityl.co/5Jdo. Accessed on: 21 November 2020.
- Gimenez, B.O., Danielli, F.E., Oliveira, C.K.A., Santos, J., Higuchi, N., 2015.
- 1125Equações volumétricas para espécies comerciais madeireiras do sul do estado de1126Roraima. Scientia Forestales, 43, 291-301.
- 1127 https://www.ipef.br/publicacoes/scientia/nr106/cap05.pdf.
- Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps.
 International Journal Geographical Information Science, 17, 235-249.
 https://doi.org/10.1080/13658810210157822.
- Hethcoat, M.G., Carreiras, J.M.B., Edwards, D.P., Bryant, R.G., Peres, C.A., Quegan,
 S., 2020. Mapping pervasive selective logging in the south-west Brazilian Amazon
 2000–2019. Environmental Research Letters, 15, art. 094057.
 https://doi.org/10.1088/1748-9326/aba3a4
- 1134 https://doi.org/10.1088/1748-9326/aba3a4.
- Higuchi, N., Santos, J., Ribeiro, R.J., Minette L., Biot, Y., 1998. Biomassa da parte
 aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia
 brasileira. Acta Amazonica, 28(2), 153-166. https://doi.org/10.1590/180943921998282166.
- Jiménez-Muñoz, J.C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi,
 K., Malhi, Y. et al., 2016. Record-breaking warming and extreme drought in the
 Amazon rainforest during the course of El Niño 2015-2016. Scientific Reports, 6,
 1-7. https://doi.org/10.1038/srep33130.
- Leite-Filho, A.T., Soares-Filho, B.S., Davis, J.L., Abrahão, G.M., Börner, J., 2021.
 Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon.
 Nature Communications, 12, art. 2591. https://doi.org/10.1038/s41467-021-228407.
- 1147 Lentini, M., Pereira, D., Celentano, D., Pereira, R., 2005. Fatos florestais da Amazônia
 1148 2005. Belém, PA, Brazil: Instituto do Homem e Meio Ambiente da Amazônia
 1149 (Imazon). 140 pp. https://bityl.co/5JdR
- Marcelino, E.V., 2008. Desastres Naturais e Geotecnologias: Conceitos Básicos.
 Caderno Didático nº 1. Santa Maria, RS, Brazil: CRS, Instituto Nacional de Pesquisas Espaciais (INPE), 38 pp. https://bityl.co/5JdF
- McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman,
 J.K., Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A. et al., 2020.
 Fire as a fundamental ecological process: Research advances and frontiers. Journal
 of Ecology, 108(5), 2047-2069. https://doi.org/10.1111/1365-2745.13403.
- Meira-Junior, M.S., Pinto, J.R.R., Ramos, N.O., Miguel, E.P., Gaspar, R.O., Phillips,
 O.L., 2020. The impact of long dry periods on the aboveground biomass in a
 tropical forest: 20 years of monitoring. Carbon Balance and Management, 15, art.
 https://doi.org/10.1186/s13021-020-00147-2.
- Monteiro, A., Cardoso, D., Conrado, D., Veríssimo, A., Souza Jr, C., 2010. Boletim
 Transparência Manejo Florestal- Estado do Pará 2008 a 2009. Belém, PA, Brazil:
 Instituto do Homem e Meio Ambiente da Amazônia (Imazon), 16 pp.
- 1164 https://bityl.co/5Jd4

1165 Morton, D.C., DeFries, R.S., Nagol, J., Souza Jr., C.M., Kasischke, E.S., Hurtt, G.C., 1166 Dubayah, R., 2011. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sensing of 1167 1168 Environment, 115(7), 1706-1720. https://doi.org/10.1016/j.rse.2011.03.002. Nascimento, M.T., Carvalho, L.C.S., Barbosa, R.I., Villela, D.M., 2014. Variation in 1169 1170 floristic composition, demography and above-ground biomass over a 20-year period in an Amazonian monodominant forest. Plant Ecology and Diversity, 7 (1-1171 1172 2), 293-303. https://doi.org/10.1080/17550874.2013.772673 1173 Nepstad, D.C., Veríssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., 1174 Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., Brooks, V. 1175 1999. Large-scale impoverishment of Amazonian forests by logging and fire. 1176 Nature, 398, 505-508. https://www.nature.com/articles/19066. 1177 Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solorzano, L., Moutinho, P., Ray, D., Guerreira Benito, J., 2004. Amazon drought 1178 1179 and its implications for forest flammability and tree growth: A basin-wide 1180 analysis. Global Change Biology, 10(5), 704-717. https://doi.org/10.1111/j.1529-8817.2003.00772.x 1181 1182 Nepstad, D.C., Tohver, I.M., Ray, D., Moutinho, P., Cardinot, G., 2007. Mortality of 1183 large trees and lianas following experimental drought in an Amazon forest. 1184 Ecology, 88(9), 2259-2269. https://doi.org/10.1890/06-1046.1. Nogueira, E.M., Nelson, B.W., Fearnside, P.M. 2005. Wood density in dense forest in 1185 1186 central Amazonia, Brazil. Forest Ecology and Management, 208, 261-286. 1187 https://doi.org/10.1016/j.foreco.2004.12.007 Nogueira, E.M., Fearnside, P.M., Nelson, B.W., Barbosa, R.I., Keizer, E.W.H., 2008. 1188 1189 Estimates of forest biomass in the Brazilian Amazon: New allometric equations 1190 and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256, 1853-1857. https://doi.org/10.1016/j.foreco.2008.07.022 1191 Nunes J.C., 2018. Ibama apreende 7 mil toras de madeira extraídas ilegalmente da 1192 1193 Terra Indígena Pirititi. Radioagência Nacional, 2 May 2018. https://bityl.co/5K63 1194 Oliveira, S., 2021. Rorainópolis, em RR, entra na lista de municípios com prioridade 1195 no controle ao desmatamento na Amazônia. G1, 13 January 2021. Available at: 1196 https://bityl.co/5Jdh. Accessed on: 15 January 2021. Pereira, D., Santos, D., Vedoveto, M., Guimarães, J., Veríssimo, A., 2010. Fatos 1197 1198 florestais da Amazônia. Belém, PA: Instituto do Homem e Meio Ambiente da 1199 Amazônia (Imazon), 124 pp. https://bityl.co/5Jd6 1200 Quintano, C., Fernández-Manso, A., Fernández-Manso, O., Shimabukuro, Y.E., 2006. Mapping burned areas in Mediterranean countries using spectral mixture analysis 1201 from a uni-temporal perspective. International Journal of Remote Sensing, 27, 1202 1203 645-662. https://doi.org/10.1080/01431160500212195 1204 Rappaport, D.I., Keller, M., Morton, D.C., Longo, M., Dubayah, R., Dos-Santos, 1205 M.N., 2018. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation, Environmental Research Letters, 13(6). 1-12. 1206 https://iopscience.iop.org/article/10.1088/1748-9326/aac331. 1207

- Ray, D., Nepstad, D., Moutinho, P., 2005. Micrometeorological and canopy controls
 of fire susceptibility in a forested Amazon landscape. Ecological Society of
 America, 15, 1664-1678. https://doi.org/10.1890/05-0404
- Silva, C.V.J., Aragão, L.E.O.C., Barlow, J., Espirito-Santo, F., Young, P.J, Anderson,
 L.O., Berenguer, E., Brasil, I., Brown, I.F., Castro, B., Farias, R. et al., 2018.
 Drought-induced Amazonian wildfires instigate a decadal scale disruption of
 forest carbon dynamics. Philosophical Transactions of the Royal Society B, 373,
 art. 20180043. https://doi.org/10.1098/rstb.2018.0043.
- Silveira, L.H.C., Rezende, A.V., Vale, A.T., 2013. Teor de umidade e densidade
 básica da madeira de nove espécies comerciais amazônicas. Acta Amazonica,
 43(2), 179–184. https://doi.org/10.1590/S0044-59672013000200007
- Silvestrini, R.A., Soares-Filho, B.S., Nepstad, D., Coe, M., Rodrigues, H., Assunção,
 R., 2011. Simulating fire regimes in the Amazon in response to climate change
 and deforestation. Ecological Applications, 21, 1573–1590.
 https://doi.org/10.1890/10-0827.1
- Slocum, T.A., 1999. Thematic Cartography and Visualization. Upper Saddle River,
 NJ, USA: Prentice Hall.
- Soares-Filho, B.S., Nepstad, D.C., Curran, L., Cerqueira, G.C., Garcia, R.A., Ramos,
 C.A., Voll, E., Mcdonald, A., Lefebvre, P., Schlesinger, P., 2006. Modelling
 conservation in the Amazon basin. Nature, 440, 520-523.
 https://doi.org/10.1038/nature04389
- Soares-Filho, B.S., Garcia, R.A., Rodrigues, H., Moro, S., Nepstad, D., 2008. Nexos
 entre as dimensões socioeconômicas e o desmatamento: A caminho de um modelo
 integrado. In: Batistella, M., Alves, D., Moran, E. (Eds.). Amazônia. Natureza e
 Sociedade em Transformação. v. 1., São Paulo, SP, Brazil: EDUSP.
 https://bityl.co/5Ji4
- Souza Jr., C.M., Roberts, D., Monteiro, A.L., 2005a. Multitemporal analysis of
 degraded forests in the southern Brazilian Amazon. Earth Interactions, 9, art. 19.
 https://doi.org/10.1175/EI132.1
- Souza Jr., C.M., Roberts, D., Cochrane, M.A. 2005b. Combining spectral and spatial
 information to map canopy damages from selective logging and forest fires.
 Remote Sensing of Environment, 98, 329-343.
- 1240 https://doi.org/10.1016/j.rse.2005.07.013.
- Souza, Jr, C.M., Siqueira, J.V., Sales, M.H., Fonseca, A.V., Ribeiro, J.G., Numata, I.,
 Cochrane, M.A., Barber, C.P., Roberts, D.A., Barlow, J., 2013. Ten-year Landsat
 classification of deforestation and forest degradation in the Brazilian Amazon.
 Remote Sensing, 5(11), 5493-5513. https://doi.org/10.3390/rs5115493.
- Stark, S.C., Breshears, D.D., Aragón, S., Villegas, J.C., Law, D.J., Smith, M.N.,
 Minor, D.M., de Assis, R.L., de Almeida, D.R.A., de Oliveira, G., Saleska, S.R.,
 Swann, A.L.S., Moura, J.M.S., Camargo, J.L., da Silva, R., Aragão, L.E.O.C.,
 Oliveira. R.C., 2020. Reframing tropical savannization: Linking changes in
 canopy structure to energy balance alterations that impact climate. Ecosphere,
 11(9), art. e03231. https://doi.org/10.1002/ecs2.3231.

- Stroppiana D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L., Brivio; P.A.
 2012. A method for extracting burned areas from Landsat TM/ETM+ images by
 soft aggregation of multiple Spectral indices and a region growing algorithm.
 ISPRS Journal of Photogrammetry and Remote Sensing, 69(1), 88-102.
- 1255 https://doi.org/10.1016/j.isprsjprs.2012.03.001
- Trumbore, S., Brando, P., Hartmann, H., 2015. Forest health and global change.
 Science, 349, 814-818. https://doi.org/10.1126/science.aac6759
- Turubanova, S., Potapov, P.V., Tyukavina, A., Hansen, M.C., 2018. Ongoing primary
 forest loss in Brazil, Democratic Republic of the Congo, and Indonesia.
 Environmental Research Letters, 13, art. 074028. https://doi.org/10.1088/17489326/aacd1c.
- 1262 Uhl, C., Buschbacher, R., 1985. A disturbing synergism between cattle-ranch burning
 1263 practices and selective tree harvesting in the eastern Amazon. Biotropica, 17(4),
 1264 265-268. https://doi.org/10.2307/2388588
- 1265 USGS (U.S. Geological Survey), 2016. U.S. Department of the Interior, USGS.
 1266 Available at: http://earthexplorer.usgs.gov/. Accessed on: 20 October 2016.
- Watson, J.E.M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C.,
 Thompson, I., Ray, J.C., Murray, K., Salazar, A. et al., 2018. The exceptional
 value of intact forest ecosystems. Nature Ecology & Evolution, 2, 599–610.
 https://doi.org/10.1038/s41559-018-0490-x
- West, T.A.P., Fearnside, P.M., 2021. Brazil's conservation reform and the reduction of
 deforestation in Amazonia. Land Use Policy, 100, art. 105072.
 https://doi.org/10.1016/j.landusepol.2020.105072
- 1274 Xaud, H.A.M., Martins, F.S.R.V., Santos, J.R., 2013. Tropical forest degradation by
 1275 mega-fires in the northern Brazilian Amazon. Forest Ecology and Management,
 1276 294, 97-106. https://doi.org/10.1016/j.foreco.2012.11.036
- Ziccardi, L.G., Graça, P.M.L.A., Figueiredo, E.O., Fearnside, P.M., 2019. Decline of
 large-diameter trees in a bamboo-dominated forest following anthropogenic
 disturbances in southwestern Amazonia. Annals of Forest Science, 76, art. 110.
 https://doi.org/10.1007/s13595-019-0901-4

Supplementary material

Logging Amazon forest increased the severity and spread of fires during the 2015-2016 El Niño

Paulo Eduardo Barni¹ Anelícia Cleide Martins Rego² Francisco das Chagas Ferreira Silva² Richard Anderson Silva Lopes³ Haron Abrahim Magalhães Xaud⁴ Maristela Ramalho Xaud⁴ Reinaldo Imbrozio Barbosa⁵ Philip Martin Fearnside⁶

¹ Professor da Universidade Estadual de Roraima – UERR, *Campus* Rorainópolis Av. Senador Helio Campos, s/nº, 69375-000, Rorainópolis, Roraima, Brazil. pbarni@uerr.edu.br

² Graduados da Universidade Estadual de Roraima – UERR, *Campus* Rorainópolis Av. Senador Helio Campos, s/n°, 69375-000, Rorainópolis, Roraima, Brazil. {anelycia.com@gmail.com; chagasferreirasilva@gmail.com}

³ Corpo de Bombeiros Militares de Roraima, Coordendoria Estadual de Proteção e Defesa Civil. Avenida Venezuela, 1271, 69309690 - Boa Vista, Roraima, Brazil. {raslopes@gmail.com}

⁴ Empresa Brasileira de Pesquisa Agropecuária – Embrapa/RR. Rodovia BR 174, Km 8, Distrito Industrial. 69301-970, Boa Vista, Roraima, Brazil. {haronxaud@gmail.com; marisxaud@gmail.com}

⁵ Instituto Nacional de Pesquisas da Amazônia (INPA), Rua Coronel Pinto, 315. CEP: 69301-150. Boa Vista, Roraima, Brazil. reinaldo@inpa.gov.br

⁶ Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936. CEP: 69067-375, Manaus, Amazonas, Brazil. pmfearn@inpa.gov.br

Supplementary material index:

1. Methodological procedures	2
1.1 Study area	2
1.2 Forest inventory locations	2
1.3 Biomass calculation in inventory plots for deriving fractions of biomass killed	. 2
1.4 Area (ha) and volume (m ³) authorized in "alternative land-use" projects	3
1.5 "Sustainable Forest Management" Plans	3
1.6 Fire severity estimation by NDVI	4
1.7 Wood density	6
1.8 Estimation loss of live biomass from cumulative selective logging by 2015	6
1.9 Selective logging	8
1.9.1 Mapping of the selective logging	8
1.9.2 Severity of fire according to the year of the selective logging	9
1.10 Calculation of weights-of-evidence	10
1.10.1 A priori probabilities of fire events	10
1.10.2 Correlation between spatial variables in the calculation of weights-of-evidence.	12
1.11 Model validation using an exponential decay function and fuzzy similarity	14
2. Results 1	15
2.1 Areas of occurrence	15
2.2 Estimates of biomass by forest type 1	16
2.3 Vulnerability of the forest to understory fires in SL areas 1	18
2.4 Fire and SL behavior as a function of forest-edge distance 1	9
2.5 Model-validation results	19
2.6 Forest vulnerability to fire	20
References	22

1. Methodological procedures

1.1 Study area

Most of the study area (6402.6 km², or 96.2% of the study area) is in the municipality of Rorainópolis, followed by the municipality of São Luiz (164.2 km², or 2.4%) and the municipality of Caracaraí (90.5 km², or 1.4%) (Table S1).

Municipalities % of **Deforestation %** Forest fire % of SL % of Area (km^2) km² (km^2) (km^2) the the the burned study logged area area area 1.4 Caracaraí 90.5 7.1 0.6 37.9 5.6 9.4 1.5 **Rorainópolis** 6,402.6 96.2 1,045.3 94.8 638.3 93.6 624.4 96.8 São Luiz 164.2 2.4 49.7 4.5 6.0 0.9 10.9 1.7 Total 6.657.3 100.0 1.102.1 100.0 682.2 100.0 644.8 100.0

Table S1. Deforestation, forest fire, and logging in the portion of each municipality located in the study area.

1.2 Forest inventory locations

The locations and other information for plots sampled in the field are presented in Table S2. All plots measured 4×250 m (1000 m²).

Table S2. Location (latitude and longitude), area (ha) and date of field data collection. SL=Selective Logging. Wo-SL = without selective logging. W-SL = with selective logging.

Plot name	SL	Latitude	Longitude	Area	*AGB_stock	Fire	Census date
				(ha)	(Mg ha ⁻¹)		(mm/dd/yyyy)
Plot 1	W-SL	0.930891	-60.451279	0.1	404.6	yes	03/11/2016
Plot 2	W-SL	0.932695	-60.447959	0.1	221.5	yes	03/11/2016
Plot 3	W-SL	0.929629	-60.442604	0.1	458.5	yes	03/16/2016
Plot 4	W-SL	0.927556	-60.441827	0.1	322.0	yes	03/16/2016
Plot 5	W-SL	0.934315	-60.449995	0.1	640.2	yes	03/16/2016
Plot 6	W-SL	0.934234	-60.452384	0.1	834.0	yes	03/16/2016
Plot 7	W-SL	0.909708	-60.452814	0.1	320.1	yes	03/23/2016
Plot 8	W-SL	0.906816	-60.453078	0.1	567.2	yes	03/23/2016
Plot 9	W-SL	0.912540	-60.452564	0.1	1095.4	yes	03/23/2016
Plot 10	W-SL	0.913743	-60.454606	0.1	427.1	yes	03/23/2016
Plot 11	W-SL	0.711231	-60.565005	0.1	863.9	yes	03/30/2016
Plot 12	Wo-SL	0.707785	-60.510418	0.1	289.6	yes	03/30/2016
Plot 13	Wo-SL	0.709255	-60.508096	0.1	504.0	yes	03/30/2016
Plot 14	W-SL	0.709511	-60.567284	0.1	1044.2	yes	03/30/2016
Plot 15	W-SL	0.712057	-60.587902	0.1	387.6	yes	03/30/2016
Plot 16	W-SL	0.712389	-60.591582	0.1	424.0	yes	03/30/2016
Plot 17	Wo-SL	0.989933	-60.425055	0.1	546.6	yes	04/06/2016
Mean	-	-	-	-	550.0	-	-

*Aboveground dry biomass stock based on Higuchi et al. (1998) with adjustment for 40% water content (Higuchi et al., 1998) and for biomass of palms (Saldarriaga et al., 1988).

1.3 Biomass calculation in inventory plots for deriving fractions of biomass killed

Unlike the biomass map for Roraima, which used the Barni et al. (2016) analysis with species specific data, only about half of the trees in the plots had known identities, and we therefore used the Higuchi et al. (1998) equation to calculate fresh biomass directly from DBH without using species-specific wood-density data. Because the plot data are only used for deriving the fractions of biomass killed by the fire in the different severity classes, not the forest

biomass to which these fractions will be applied, the use of different biomass estimation equations will not affect the results for the impact of fire in the study area, since the both the numerator and the dominator in the fractions of biomass killed have been calculated with the same method.

Fresh weight was converted to dry weight by multiplying by 0.60, which was the dry weight to fresh weight ratio derived by Higuchi et al. (1998: Table 3b). This rate was applied to the fresh-biomass value calculated by the Higuchi et al. (1998) equation for each tree in the database. This procedure was performed from the excel spreadsheet. Thus:

 $Ln(Fresh weight) = -1.497+2.548 \times Ln(DBH)$ Dry weight = EXP(Ln (Fresh weight)) × 0.6

The total weight (kg^{-1}) of each plot (sum of the dry weight of all trees in the plot) was multiplied by 10 (to transform from kg⁻¹ per plot to kg ha⁻¹) and, in sequence, the total weight in kg ha⁻¹ was divided by 1000 to transform into Mg ha⁻¹.

1.4 Area (ha) and volume (m³) authorized in "alternative land-use" projects

The largest area authorized for deforestation (3300.7 ha, or 26.4% of the total area authorized) was in 2015 and the smallest (290.6 ha, or 2.3%) was in 2011. Only 26.2% (3114.1 ha) of these areas authorized for alternative land use were effectively deforested by 2019 (Table S3).

Table S3.	Area	and	volume	of	wood	authori	zed	for	harvest	in	alternative	land-use	projects	in	the	study
area.																

Year	n	Authorized area (ha)	Authorized volume (m ³)	Average volume (m ³ ha ⁻¹)	*Deforestation (ha)	%	**YARSL (n)
2010	9	2,095.4	133,939.0	63.7	525.9	25.1	2.8
2011	2	290.6	13,027.8	49.5	102.4	35.2	4
2012	17	3,244.9	150,319.5	50.6	755.5	23.3	2
2013	4	873.2	46,156.7	53.3	195.0	22.3	1
2014	12	2,676.1	114,311.9	43.0	695.8	26.0	1
2015	14	3,300.7	153,920.6	48.4	839.7	25.4	4
Total	58	12,480.9	611,675.5	51.4	3114.1	26.2	2.5

* Deforestation by 2019.

** Years after the release to SL.

1.5 "Sustainable Forest Management" Plans

The areas released for selective logging in "sustainable forest management" plans in Rorainópolis totaled 11,958.8 ha from 2016 to 2020 with an average authorized harvest of 23.9 m^3 ha⁻¹. In this area, a total volume of 281,091.3 m³ of wood in logs was released (Table S4).

ID	Latitude	Longitude	Authorized area (ha)	Authorized volume (m ³)	Average volume (m ³ ha ⁻¹)	Year
1	0.4351889	-60.4069556	552.6	13,079.7	23.7	2019/20
2	0.3815278	-60.6354444	957.9	14,712.8	15.4	2017/18
3	0.5415483	-60.4245542	1,442.9	35,830.9	24.8	2019/20
4	0.7514861	-60.6653361	1,254.1	19,664.6	15.7	2018/19
5	0.5598333	-60.3416111	1,071.0	22,125.1	20.7	2018/19
6	0.7100000	-60.0663889	987.9	26,066.4	26.4	2016/17
7	0.5574109	-60.6592349	964.3	24,456.3	25.4	2020/21
8	0.2734927	-60.4002495	1,163.9	33,588.1	28.9	2020/21
9	0.5218820	-60.6587190	947.7	22,580.0	23.8	2020/21
10	0.9931272	-60.5705950	192.6	5.570.0	28.9	2020/21
11	0.2588300	-60.4437717	1,089.9	31,847.2	29.2	2020/21
12	0.4905078	-60.3520806	666.4	17,003.1	25.5	2020/21
13	0.4905078	-60.3520806	667.8	14,567.1	21.8	2020/21
		Total	11,958.8	281,091.3	23.9	

Table S4. Location (latitude and longitude), area (ha) and volume (m^3) authorized for logging in "sustainable forest management" plans in the municipality of Rorainópolis.

1.6 Fire severity estimation by NDVI and NBR

The results of the comparison between NDVI and NBR using fire-severity classes (light, moderate, strong and very strong) are presented in Table S5. Figure S1 shows the results of the comparative analysis between the NDVI and the NBR in the assessment of burned areas. Figure S2 shows a portion of the study area with fire-severity classifications by each index.

The larger area that the NBR index detected in the lowest severity class (light), as compared to NDVI, is an indication in favor of NDVI as a more accurate index for our purposes. The fires in the area occurred from 1 December 2015 to 23 March 2016, with most of the 216 "hot pixels" detected by the Aqua satellite being detected between 15 January and 5 February 2016. This means that the bulk of the burning was almost five months before the satellite pass on 9 June 2016, and, with the rainy season beginning at the end of March, there were over two months of rain before the satellite pass. Therefore there had been time for regeneration of green vegetation in the understory of the burned areas. The burn-severity classification by the sensors would be most likely to downgrade the assignment of values in lower severity classes, such as classifying a "moderate" burn as "light," because the more-severe burns would inhibit regeneration. The close agreement between the two indices (9,6% NDVI and 8.6% NBR) in their findings for the highest severity class (very strong) can be explained by the almost total inhibition of regeneration in these places when fire is very intense. In this case, the intensity of the fire may have partially or totally eliminated the seed bank from the soil, thereby making more time necessary for regeneration (Figure S2).

NDVI and NBR use different bands, which may have made the green regeneration lead NBR to downgrade the assigned severities more than did NDVI. NDVI uses Landsat 8 sensor bands 5 (near infrared [NIR] wavelength range: 0.851 - 0.879 micrometers) and 4 (red: 0.636 - 0.673 micrometers). NBR uses bands 7 (short-wave infrared 2 [SWIR2]: 2.107 - 2.294 micrometers) and 5 (NIR: 0.851 - 0.879 micrometers). In the case of NBR, there is an increase in the contrast between the values of photosynthetically active vegetation and photosynthetically inactive vegetation (dead biomass). Higher reflectance levels associated with photosynthetically active vegetation, and part of this increase in "greenness" detected by NBR, can be attributed to forest regeneration by sprouting, seedling emergence from the soil seed bank and appearance of herbaceous plants in abundance.

Both indices capture the "greenness" effect, but this reflection is not very evident in the case of NDVI because this composition uses band 4 (red). When using band 7 to compose the NBR there is a greater expansion of the values due to the greater contrast (greater difference) between the reflection values of bands 5 and 7 than between the reflection values of bands 5 and 4 used to compose the NDVI. For example, in our study the range of the NBR index values was 0.5010 (0.7205 minus 0.2104: Table S5) while the range of the NDVI was 0.3784 (0.6031 minus 0.2247: Table 1 in the main text). This difference meant a 32.4% increase in the amplitude of the NBR values in relation to the amplitude of the NDVI values.

This explanation is speculative due to the lack of information linking ground-level regeneration with the NBR index. Our empirical experience suggests rapid regeneration in lower-severity burns. This subject should be the object of future studies in the region due to the importance of improving forest degradation estimates.

	NI	NDVI N		IBR NDVI- NBR			NBR values
Class	Area (km ²)	%	Area (km ²)	%	Area (km ²)	%	Dimensionless (- 1 to +1)
Light	245.8	36.2	282.9	41.7	-37.1	-15.1	0.5764 to 0.7205
Moderate	227.5	33.5	206.9	30.5	20.6	9.1	0.4904 to 0.5764
Strong	140.2	20.7	130.2	19.2	10.0	7.1	0.3944 to 0.4904
Very strong	64.8	9.6	58.3	8.6	6.5	10.0	0.2104 to 0.3944
Total	678.3	100.0	678.3	100.0	0.0	-	-

Table S5. Comparison analysis between NDVI and NBR using fire-severity classes.

Figure S1. Comparison between sample values (n = 2502) for NBR and NDVI in burned areas in the study area.

Figure S2. Fire severity classification using NDVI (A and B) and NBR (C and D) in a portion of the study area.

1.7 Wood density

The values calculated for the basic density of wood (g cm⁻³) harvested in the SL areas are shown in Table S6. The table also provides the sources of the information.

		Wood		Basic			
Species	Local name	volume	(1)	density	Note	Weighted	Density
		m ³	%	(g cm ⁻³)			Source
Manilkara huberi	Maçaranduba	9,806	29.2	0.878	(2)	0.257	Silveira et al., 2013
Dinizia excelsa Hymenolobium	Angelim-ferro Angelim-	9,235	27.5	0.86		0.237	Fearnside, 1997
excelsum	pedra	4,440	13.2	0.64		0.085	Fearnside, 1997
Goupia glabra	Cupiúba	3,880	11.6	0.712	(2,3)	0.082	Nogueira et al., 2005
Erisma fuscum	Caferana Rabo-de-	2,170	6.5	0.49	(4)	0.032	Fearnside, 1997
Qualea paraensis	arraia	1,350	4.0	0.67		0.027	Fearnside, 1997
Protium sp.	Casca-grossa	1,000	3.0	0.589	(2,3,5)	0.018	Nogueira et al., 2005
Clarisia racemosa	Guaruba	1,000	3.0	0.665	(2)	0.020	Silveira et al., 2013
Couratari stellata	Tauari	320	1.0	0.63		0.006	Fearnside, 1997
Bagassa guianensis	Tatajuba	280	0.8	0.69		0.006	Fearnside, 1997
Handroanthus sp.	Ipê	77	0.2	0.91		0.002	Fearnside, 1997

 Table S6. Calculation of weighted mean wood density.

(1) Wood volumes are from a 2013 survey of 9 sawmills in Rorainópolis by Crivelli et al., 2017).

(2) Includes variation along the trunk.

(3) Includes radial variation (density of cross-sectional discs, including bark)

(4) Density of a congeneric.

(5) Mean of 14 trees from 7 species.

1.8 Estimation of harvesting intensity and loss of live biomass from cumulative selective logging by 2015

Only an approximate value can be estimated for the loss of live biomass to selective logging at the time of the 2015-2016 fires. Official data on log volumes processed in sawmills and

authorized for sale have wide discrepancies, and data are only available for certain years for different measures (Table S7). The data for log volume processed in sawmills, which information is available for the most years (2007-2019) is particularly unreliable. From 2007 to 2014 the volume officially reported (Brazil, IBGE, 2021) averaged 34,525 m³ year⁻¹, jumping by 5.3 fold in 2015 to a new level, presumably due to an improvement in the veracity of reporting beginning in 2015. The new level presumed to originate in the municipality of Rorainópolis (90%, see text) is close (4.5% below) to the amount authorized for sale from clearcutting projects in 2015, the only year with data on the clearcutting projects after this shift (data on clearcutting projects are available for 2010-2015). The volume data for clearcutting authorizations therefore appears to be a good representation of the portion (estimated at 90%) of volume processed by sawmills in Rorainópolis that originates within the municipality and therefore in the 520.5-km² area where we mapped selective logging. During the 6 years with data for authorizations of clearcutting projects (2010-2015) the mean amount authorized was 101,945.8 m³ year⁻¹. From this 1.2% must be deducted for the logs that were sold from the areas that were authorized for clearcutting that were, in fact, actually clearcut (see text), meaning that the volume harvested through selective logging was 100.742.5 m³ year⁻¹. If one considers that this annual harvest also applies to the preceding 4 years (2006-2009), when substantial logging activity is known to have taken place, then the harvest intensity considering the 10-year 2006-2015 period was 19.4 m³ ha⁻ ¹. Considering the mean basic density the wood of 0.770 (See text Section 2.3.2), this removal in logs represents 14.9 Mg ha⁻¹. To obtain the reduction in live biomass from the selective logging we must also include the stumps and crowns of the harvested trees, as well as the biomass of unharvested trees killed from damage in the logging operations. Nogueira et al. (2008) found that stumps represented 1% of the biomass of the commercial boles in 264 harvested trees in Brazil's "arc of deforestation" in the southern part of Brazilian Amazonia. Applying this percentage, the stumps represent 0.15 Mg ha⁻¹, and the trunk from the ground to the first significant branch for the harvested trees represents 15.05 Mg ha⁻¹. Crowns were found to represent an average of 30.8% of the aboveground biomass in 121 trees in dense forest near Manaus (da Silva, 2007, p. 57). The crowns of the harvested trees therefore represent 6.7 Mg ha⁻¹, and the total (commercial log + stump + crown) represents 21.75 Mg ha⁻¹. Since this illegal selective logging does not employ reduced-impact techniques, damage equal to 64% of the harvested biomass is considered, based on studies reviewed in Fearnside (1995, p. 321). This increases the aboveground biomass loss to 35.67 Mg ha⁻¹.

Year	Volume processed in sawmills	Processed log volume assumed to	Volume Volume authorized in authorized deforestation in forest- projects management		Discrepancy between processed volume assumed to come from Rorainópolis and volume authorized in deforestation projects				
	(m ³)	come from	projects	management	(m^{3})	(%)			
	(a)	Rorainópolis	(m ³)	projects					
		(m ²)	(c)	(m ²)					
2005	10.000	(b)		(d)					
2007	40,000	36,000							
2008	32,700	29,430							
2009	32,500	29,250							
2010	33,000	29,700	133,939.0		104,239.0	351.0			
2011	32,600	29,340	13,027.8		-16,312.2	-55.6			
2012	35,000	31,500	150,319.5		118,819.5	377.2			
2013	36,400	32,760	46,156.7		13,396.7	40.9			
2014	34,000	30,600	114,311.3		83,711.3	273.6			
2015	179,147	161,232	153,920.6		-7,311.7	-4.5			
2016	193,210	173,889		20,066.4					
2017	424,601	382,141		14,712.8					
2018	155,942	140,348		41,789.7					
2019	170,000	153,000		13,079.7					
2020	*	,		149,611.8					
2010-20	15	315,132.3	611,674.9	,	296,542.6	94.1			
2010-20	14	153,900	457,754.0		303,854.3	197.4			

Table S7. Comparison of official data sources on log volumes in Rorainópolis

(a) Brazil, IBGE (2021).

(b) Assumed 90% originates from the municipality of Rorainópolis and 10% from the neighboring municipality of Caracaraí and São Luiz. Volume from indigenous areas is assumed not to be reported.(c) Table S3.

(d) Table S4.

1.9 Selective logging 1.9.1 Mapping of the selective logging

For mapping selective logging, 16 images were used: 10 images from Landsat 5 TM and six from Landsat 8 OLI / TIRS (Table S8). The classification was checked by field observations in burned and unburned areas in 21 inventoried plots after the fires occurred (Barni et al., 2017), of which 17 were used in the present study. We also used a vector file (shapefile) provided by FEMARH for areas licensed for deforestation (128.3 km²) in our study area during the same period of analysis (2007 to 2015) as a way to resolve doubts about spectral patterns in the images caused by SL. After mapping SL for this interval, the vector files were gathered in a single vector layer, converting this to an SL map (Figure S3).

		Satallita	ST		*Deforestation	
*Year	Image date	data	(km^2)	%	(km ²)	%
2007	21 Sept.	Landsat 5	39.7	6.2	19.4	11.3
2008	10 Nov.	Landsat 5	37.6	5.8	26.3	15.3
2009	29 Nov.	Landsat 5	46.9	7.3	18.2	10.6
2010	15 Oct.	Landsat 5	75.9	11.8	16.1	9.3
2011	31 Aug.	Landsat 5	80.4	12.5	11.2	6.5
2012	_	-	-	-	15.5	9.0
2013	23 Oct.	Landsat 8	72.4	11.2	22.8	13.2
2014	29 Dec.	Landsat 8	93.1	14.4	19.5	11.3
2015	30 Nov.	Landsat 8	198.7	30.8	23.3	13.5
TOTAL	16	-	644.8	100.0	172.3	100.0

Table S8. Mapping of selective logging (SL) from 2007 to 2015 in the study area.

* No images were observed for the year 2012 in our study area.

** RGB and NDVI images.

*** Deforestation in the municipality of Rorainópolis (Brazil, INPE, 2020).

Figure S3. (A) Selective-logging map from 2007 to 2015 with the location of the 17 transects from the forest inventory and SL projects authorized by FEMARH in the study area, and in (B) and (C) detection of the SL areas in the RGB and NDVI images (Scale: 1: 50,000).

1.9.2 Severity of fire according to the year of selective logging

Analysis of the fire severity classes in areas impacted by SL showed that the class with the greatest severity ("very strong") increased with decreasing time elapsed between the harvesting of wood and the occurrence of the fire. For example, for areas logged in 2007 the difference between the "light" and "very strong" classes was 7.4%, while for areas logged in 2015 (the year the fire started in the region) this difference was ~ 3 times greater (21.9%) (Table S9).

	Lig	ht	Mode	erate	Stro	ng	Very s	trong	
Year	Area (km ²)	%	Area (km ²)	%	Area (km²)	%	Area (km ²)	%	Total
2007	5.5	10.8	6.1	10.4	4.5	10.0	3.0	11.6	19.1
2008	3.3	6.4	3.0	5.2	1.9	4.2	0.8	2.9	8.9
2009	7.1	13.9	7.6	13.0	4.8	10.5	2.1	8.1	21.5
2010	6.0	11.8	5.0	8.7	2.7	6.0	0.9	3.6	14.7
2011	3.7	7.2	4.0	6.9	2.9	6.4	1.4	5.3	11.9
2013	4.7	9.3	7.4	12.7	6.8	15.1	3.9	14.8	22.8
2014	4.6	9.1	6.8	11.7	6.5	14.4	3.9	15.1	21.9
2015	16.0	31.5	18.3	31.4	15.1	33.5	10.0	38.4	59.5
Total	51.0	100.0	58.2	100.0	45.2	100.0	26.1	100.0	180.5

Table S9. Severity of fire according to the year of selective logging

1.10 Calculation of weights-of-evidence 1.10.1 *A priori* probabilities of fire events

The weights-of-evidence originated from the Bayesian method of calculating conditional probabilities. Its application in modeling the dynamics of land-use and land-cover change assumes that it is possible to calculate the probability *a posteriori* of an event happening based on information obtained *a priori* from a set of conditions (evidence) that favored or determined the event in question. In our study, a set of conditions or "evidences" was transformed into maps of distance variables (maps of continuous variables) and maps of categorical variables (maps of classes) to represent influences on the occurrence of forest fires in the study area in 2015/2016 (Figure S4). The calculations of the weights-of-evidence and of the probability map were carried out in a sub-model in the Dinamica-EGO software with a stacking of the maps (Soares-Filho et al., 2014) (Figures S5 and S6).

Figure S4. Set of continuous variables (with distance ranges) and categorical variables (vegetation, slope and altitude). SL = selective logging.

Figure S5. Submodel of the Dinamica-EGO software for calculating the weights-of-evidence coefficients. **Source**: adapted of the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/).

Figure S6. Submodel of the Dinamica-EGO software for calculating the map of transition probabilities and the simulated fire map. **Source**: adapted of the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/).

The influence of the weights-of-evidence can be positive or negative. The coefficients of the weights-of-evidence are positive when they favor or promote an increase in the probability of a class transition, and they are negative when they inhibit the class transition, decreasing its probability of occurrence. For example, the spatial probability map (derived from weights-of-evidence) will indicate to the software which sets of pixels representing forest on a land-use map at time t_1 have a greater chance or probability of changing to a burnt area at time t_2 . The variable "distance to secondary roads," for example, will have its maximum positive (+) weight-of-evidence in the first meters away from the fire, and at progressively greater distances this influence will decrease until it becomes negative (-), reaching its negative maximum at the most distant point.

In the modeling the weights-of-evidence represent the amount of influence of each variable on the probability of transition of a cell representing a particular state (i: forest) to change to another state (j: fire (F)), depending, for example, on its location within a distance range. In this way, the cell that is located closest to where the phenomenon occurred has a higher chance or greater probability. This relationship can be represented by equations (1) to (9) below, derived from the Bayesian inference method:

$$P(F/A) = \frac{P(F \cap A)}{P(A)}$$
(1)

$$P(A/F) = \frac{P(A \cap F)}{P(F)}$$
(2)

$$P(A \cap F) = P(A/F) * P(F)$$
(3)

Likewise, considering non-event F, as not F (\hat{F}), we obtain (4):

$$P(\hat{F} / A) = P(\hat{F}) * \frac{P(A / \hat{F})}{P(A)}$$
(4)

Now replacing (4) in (1), we have (5):

$$P(F/A) = P(F) * \frac{P(A/F)}{P(A)}$$
(5)

Applying the ratio between Equations (6) and (7), we obtain (8): (6)

$$O(F / A) = O(F) * \frac{P(A/F)}{P(A/\widehat{F})}$$
(6)

$$\log O(F/A) = \log O(F) + \log \frac{P(A/F)}{P(A/\widehat{F})}$$
(7)

$$\log O(F/A) = \log O(F) + W^{+}$$
(8)

Thus:

$$\log O(F/A) = \log O(F) + \sum_{i=1}^{n} W_{i}^{+}$$
(9)

Where "{F}" and "O {F / A}" are proportions of *a priori* probability that the "F" (fire) event occurs, and the fire event occurs given a spatial pattern "A", respectively. "W +" is, therefore, the weight-of-evidence of event F occurring given the spatial pattern "A". Thus, the calculation of the *a posteriori* spatial transition probability "i \rightarrow j" for a spatial data set "(B, C, D, ... N)" can be represented by (10):

$$P(\mathbf{i} \to \mathbf{j}/\mathbf{B} \cap C \cap D... \cap N) = \frac{e^{\sum W_i^+}}{1 + e^{\sum W_i^+}}$$
(10)

Where, "B, C, D, ..., N" are values of the k spatial variables estimated at positions "x, y", being represented by their respective weights-of-evidence "W + N". For more details on the weights-evidence method, see Barni et al. (2015).

1.10.2 Correlation between spatial variables in the calculation of weights-of-evidence

Application of the weights-of-evidence method presupposes spatial independence between variables. In the case of pairs of variables with a correlation above 0.5, one of them must be removed from the set of maps that will be used in the modeling in order to guarantee compliance with the model's assumption of independence (Bonham-Carter, 1994). This independence is

measured or estimated by observing some parameters, mainly that of contingency, which, like Pearson's correlation analysis (Figueiredo-Filho and Silva Junior, 2009), indicates the amount of correlation that exists between two spatial variables (Table S10).

Variable 1	Variable 2	CHI Sq.	CRAMMER	CONTING	ENTROPY	INF_C*INCERT
Deforestation	Secondary roads	26324385.8	0.38	0.86	4.36	0.35
Fire	Deforestation	13591362.2	0.31	0.81	4.97	0.20
SL	Secondary roads	11137374.0	0.30	0.78	4.75	0.21
BR-174	Village	12300562.7	0.29	0.78	4.74	0.24
Fire	SL	10654858.5	0.26	0.77	5.07	0.18
Fire	Secondary roads	10387346.3	0.29	0.77	5.04	0.18
Deforestation	SL	9312302.5	0.26	0.75	4.87	0.17
BR-174	Secondary roads	7309303.3	0.22	0.68	4.88	0.14
BR-174	Deforestation	7117818.5	0.21	0.67	4.88	0.14
Fire	Protected area	4585235.4	0.20	0.65	5.02	0.13
Fire	BR-174	5084155.0	0.20	0.65	5.22	0.09
Protected area	SL	4263722.4	0.19	0.64	4.83	0.13
Protected area	BR-174	4550167.7	0.19	0.63	4.80	0.13
Secondary roads	Village	4673617.7	0.19	0.61	5.07	0.11
Deforestation	Village	4629794.4	0.18	0.61	5.09	0.10
BR-174	SL	3819157.9	0.17	0.59	5.06	0.07
Protected area	Altitude	3321756.0	0.23	0.59	4.28	0.12
Fire	Village	3152213.0	0.14	0.57	5.35	0.07
SL	Water	2948194.9	0.15	0.56	5.14	0.06
Protected area	Secondary roads	3536961.0	0.16	0.56	4.90	0.09
Protected area	Deforestation	3378198.9	0.15	0.55	4.93	0.09
Protected area	Village	2480305.7	0.14	0.53	5.06	0.07
Protected area	Water	2553570.6	0.14	0.52	4.96	0.08
Water	Altitude	2382190.2	0.19	0.52	4.64	0.07
Altitude	Vegetation	2335823.6	0.40	0.49	2.34	0.10
Secondary roads	Altitude	2291973.7	0.18	0.49	4.60	0.06
SL	Village	2019896.1	0.12	0.48	5.23	0.06
Water	SL year class	214633.3	0.21	0.48	4.20	0.06
Village	SL year class	211868.6	0.21	0.48	4.30	0.06
Protected area	SL year class	181646.8	0.20	0.47	4.06	0.08
BR-174	Altitude	1947197.2	0.17	0.46	4.58	0.06
Fire	Water	1609818.9	0.10	0.45	5.42	0.04
Deforestation	Water	2167922.4	0.11	0.45	5.25	0.05
Deforestation	Altitude	1804270.1	0.16	0.44	4.61	0.05
BR-174	SL year class	168417.7	0.18	0.44	4.18	0.05
Fire	Altitude	1596435.5	0.15	0.43	4.85	0.04
SL	Altitude	1589559.1	0.15	0.42	4.64	0.04
BR-174	Water	1463864.6	0.10	0.40	5.25	0.03
Fire	SL year class	133323.5	0.16	0.40	4.38	0.05
Village	Altitude	1239948.2	0.13	0.39	4.74	0.04
Water	Secondary roads	1464261.7	0.10	0.38	5.29	0.04
Deforestation	SL year class	111350.3	0.15	0.37	4.21	0.04
Water	Village	1102794.6	0.07	0.36	5.38	0.03
Water	Vegetation	771589.5	0.25	0.33	3.11	0.04

Table S10. Correlated variables in the calculation of the weights of evidence.

BR-174	Vegetation	798968.3	0.24	0.32	2.98	0.04
Slope	Altitude	838470.5	0.11	0.32	4.11	0.03
Protected area	Vegetation	654567.6	0.23	0.31	2.79	0.03
Secondary roads	SL year class	68851.5	0.12	0.30	3.87	0.02
SL year class	Altitude	68036.6	0.12	0.29	3.69	0.03
Secondary roads	Vegetation	475077.7	0.18	0.25	3.01	0.02
Village	Vegetation	440054.3	0.18	0.25	3.13	0.02
SL	Vegetation	444832.3	0.18	0.24	3.05	0.02
Deforestation	Vegetation	327915.6	0.15	0.21	3.00	0.02
Fire	Vegetation	323501.9	0.15	0.21	3.26	0.01
SL year class	Vegetation	26428.0	0.14	0.19	2.18	0.02
Protected area	Slope	221586.4	0.06	0.18	4.52	0.01
Water	Slope	203287.6	0.06	0.17	4.76	0.01
SL	Slope	154153.7	0.05	0.14	4.74	0.00
Secondary roads	Slope	145011.5	0.05	0.14	4.69	0.00
Deforestation	Slope	128456.0	0.04	0.13	4.68	0.00
BR-174	Slope	123456.6	0.04	0.13	4.66	0.00
Fire	Slope	91464.5	0.04	0.11	4.94	0.00
Slope	Vegetation	54819.5	0.06	0.09	2.46	0.00
Village	Slope	29033.2	0.02	0.06	4.80	0.00
SL year class	Slope	2855.3	0.02	0.06	3.98	0.00
SL	SL year class	0.0	0.00	0.00	1.93	0.00

SL = Selective logging

1.11 Model validation using an exponential decay function and fuzzy similarity

The "Calc reciprocal similarity map" function in Dinamica-EGO calculates a two-way similarity from the first map (simulated scenario) to the second (initial scenario) and from the second to the third (final scenario) (Figure S7). It is advisable to always chose the smaller similarity value since random maps tend to produce artificially high fits when compared univocally, because they spread the changes over the entire map. This test employs an exponential decay function truncated outside of a window size of 11×11 cells. The test result is returned in a .csv table file (Figure S8).

Figure S7. Fuzzy comparison method using a map of differences and an exponential decay function. The process applies a constant decay function in which all window weights are set to 1 (**A**). The window convolutes over the map, obtaining a fuzzy value for the central cell (**B**). X = null values in the map. **Source**: adapted from the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/).

Figure S8. Submodel for similarity calculation in Dinamica-EGO software. **Source**: adapted from the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/).

2. Results

2.1 Areas of occurrence

The areas of occurrence of the main variables distributed in the study area are presented in Table S11. The original forest area was estimated at 6512.4 km^2 , representing 97.8% of the study area.

	Class	Area (km²)	%	Forest fire (km ²)	Forest fire % of forest area	SL-fire (km ²)	SL-fire % of forest fire area	SL (km ²)	SL-fire (%) of SL area	
Original vegetation	Forest	6,512.4	97.8							
	Non-forest	144.9	2.2							
	Total	6,657.3	100.0							
2016 vegetation	Forest	5,410.3	81.3	682.2	12.6	180.7	26.5	644.8	28.0	
	Deforestation	1,102.1	16.6	_	-	-	-	-	-	
	Non-forest	144.9	2.2	_	-	-	-	-	-	
	Total	6,657.3	100.0							
Protected areas	Indigenous land	875.6	13.2	0.0	0.0	_	_	_	_	
	Anauá National Forest	2.6	0.04	2.0	76.9	-	-	-	_	

Table S11. Original forest area (km²), protected areas, non-forest and deforestation occurring in the study area.

2.2 Estimates of biomass by forest type

Dense ombrophilous forest was the most affected by understory fires, totaling 532.7 km² and the estimated affected dry biomass at the time of the fire totaling 26.2×10^6 Mg. Ecotone forest had the smallest area (9.3 km²) and the smallest amount (0.3 × 10⁶ Mg) of affected biomass (Table S12).

		Original biomass (prior to logging)				Affected biomass (biomass at time of fire)					
Forest	Total area affected bv fire (km ²)	Total biomass in area affected bv fire (10 ⁶ Mg)	% of total biomass in area affected by fire	Mean original biomass (Mg ha ⁻¹)	Area W/SL (km²)	Biomass after logging (10 ⁶ Mg)	Biomass removed or killed by SL (10 ⁶ Mg)	Affected biomass in area with SL (10 ⁶ Mg)	Area Wo/SL (km ²)	Affected biomass in area Wo/SL (10 ⁶ Mg)	
Campinarana	140.0	3.6	13.2	255.6	28.3	0.71	0.1	0.7	111.7	2.9	
Ecotone	9.3	0.33	1.2	360.3	0.0	0.0	0.0	0.0	9.3	0.3	
Ombrophilous	532.7	23.2	85.6	435.3	152.3	6.63	0.5	6.1	380.3	16.6	
Total	681.9	27.1	100	397.4	180.62	7.34	0.6	6.7	501.3	19.8	

Table S12. Estimated biomass before and after logging in the area affected by fire separated by forest type and by selective-logging status.

The estimation of forest biomass was performed for each forest type separately for areas with and without selective logging (SL). The dense ombrophilous forest (Ds) had the largest extension in terms of occupied area (87.8%) and in terms of biomass (92.5%) in relation to the total biomass (277.37×10^6 Mg) estimated for the original forest areas. The biomass of the areas under SL (27.6×10^6 Mg) represented 9.9% of the total biomass found in the study area, and 95.3% of that biomass was under dense ombrophilous forest (Table S13).

Туре	Area (km ²)	%	Biomass (10 ⁶ Mg)	Mean (Mg ha ⁻¹)	Wo/SL 10 ⁶ Mg)	%	W/SL (10 ⁶ Mg)	%
Campinarana	727.9	11.2	18.7	256.3	17.4	93.0	1.30	7.0
Ecotone	63.7	1.0	2.1	335.5	2.1	99.1	0.02	0.9
Ombrophilous	5,720.8	87.8	256.7	448.5	230.3	89.7	26.3	10.3
Total	6,512.4	100.0	277.4	425.9	249.8	90.0	27.6	9.9

Table S13. Estimated biomass (Mg) in the study area separated by areas affected by selective logging (SL) (W-SL) and areas not affected by SL (Wo-SL).

Wo/SL = without selective logging. W-SL = with selective logging.

The cumulative loss of original biomass by deforestation up to 2016 was estimated at 48.04 $\times 10^{6}$ Mg, representing more than twice (2.1 times) the biomass affected by SL in our study area. The area deforested in dense ombrophilous forest (1059.3 km²) represented 96.1% of the total area deforested by 2016 and 97.5% of the total biomass lost (Table S14).

Deforestation	Area (km ²)	%	Biomass (10 ⁶ Mg)	%	Mean (Mg ha ⁻¹)
Campinarana	33.8	3.1	0.9	1.8	255.6
Ecotone	8.8	0.8	0.3	0.7	367.4
Ombrophilous	1,059.3	96.1	46.9	97.5	442.3
Total	1,101.9	100.0	48.0	100.0	436.0

Table S14. Biomass lost due to cumulative deforestation up to 2016.

2.3 Vulnerability of the forest to understory fires in SL areas

SL influenced the spread of fire in the study area during the 2015/2016 El Niño event within the fire-severity classes. Based on NDVI image analyses, the graphs in Figure S9 show positive correlations between fires and the logging practiced in years immediately prior to the fires.

Figure S9. Comparison between NDVI values in SL areas in years prior to the fires with the NDVI values in the fire image for 2016. (A) Comparison of NDVI values between the years 2010 and 2016. (B) Comparison of NDVI values between the years 2013 and 2016. (C) Comparison of NDVI values between the years 2014 and 2016 and (D) comparison of NDVI values between the years 2015 and 2016. The lower-case letters above the boxes indicate statistical results between the NDVI values in years prior to the fires considering the fire-severity classes of the fires, while upper-case letters indicate the statistical results for the NDVI values in the 2016 image at the fire-event locations, also considering the severity classes.

2.4 Fire and SL behavior as a function of forest-edge distance

The highest occurrence of forest fires (114.9 km²: 20.1%) in the study area was found in the range between 0 to 120 m from the forest edge. The SL presented a similar result reaching 113.9 km² (24.3%) in the first interval. The burned areas affected by SL were calculated at 161.2 km² in the range between 0 and 1200 m, representing 89.4% of the total reached in the study area (Table S15).

Range (m)	Fire (km ²)	%	SL (km ²)	%	SL x Fire (km ²)	%	SL / Fire (%)	SL x Fire / Fire (%)	SL x Fire / SL (%)
0 120	114.9	20.1	113.9	24.3	23.7	14.7	99.1	20.6	20.8
120 240	95.3	16.7	58.2	12.4	25.3	15.7	61.1	26.5	43.4
240 360	77.8	13.6	55.2	11.8	23.5	14.6	70.9	30.2	42.5
360 480	68.8	12.0	52.8	11.3	21.2	13.2	76.7	30.9	40.2
480 600	55.6	9.7	47.5	10.1	17.9	11.1	85.3	32.2	37.7
600 720	43.6	7.6	38.1	8.1	14.1	8.7	87.2	32.3	37.0
720 840	37.8	6.6	32.5	6.9	11.8	7.3	85.9	31.2	36.3
840 960	31.7	5.6	28.4	6.1	9.9	6.1	89.5	31.0	34.7
960 1080	25.3	4.4	23.0	4.9	7.7	4.7	91.2	30.3	33.2
1080 1200	21.0	3.7	19.3	4.1	6.3	3.9	92.2	30.1	32.7
Total	571.7	100.0	468.8	100.0	161.2	100.0			
Percent	682.2	83.8	644.8	72.7	180.4	89.4			

Table S15. Fire and SL occurrence depending on the distance from the forest edge.

2.5 Model-validation results

The results of the validation test are shown in Figure S10. The model containing all variables showed the greatest similarity between the observed and simulated scenarios.

Figure S10. Similarity test between the modeled maps and the fire map for 2016.

2.6 Forest vulnerability to fire

The assessment of the vulnerability maps showed that the SL influenced the spread of fire in the study area during the 2015/2016 El Niño event. The exposure of forest areas to fires increased by 366.2% in the most-vulnerable range, which ranged from 79.11 to 99.99% (0.7911 to 0.9999 probability), with the presence of SL areas in the model compared to the absence of SL in the model (Table S16; Figures S11 and S12).

	Whole area regardless of impacts		Without SL		Without seco roads	ondary	Without deforestation		
Range	Area (km ²)	%	Area (km ²)	%	Area (km ²)	%	Area (km ²)	%	
0.0004 - 0.1488	2,550.4	47.1	1,750.1	32.3	2,467.7	45.6	2,478.5	45.8	
0.1489 - 0.3955	421.4	7.8	822.4	15.2	511.3	9.4	501.1	9.3	
0.3956 - 0.6109	407.5	7.5	938.9	17.3	500.3	9.2	478.1	8.8	
0.6110 - 0.7910	547.7	10.1	1,315.5	24.3	588.7	10.9	609.0	11.2	
0.7911 - 0.9999	1,487.9	27.5	587.9	10.9	1,346.7	24.9	1,348.1	24.9	
Total	5,414.8	100.0	5,414.8	100.0	5,414.8	100.0	5,414.8	100.0	
	Without SL, roads			With SI		dary	With deforestation		
	or deforestati	on	with 5E		roads		with deforestation		
Range	$\Lambda reg (km^2)$	0/			2		•		
	Alea (Kill)	%	Area (km²)	%	Area (km ²)	%	Area (km ²)	%	
0.0004 - 0.1488	1,576.3	% 29.1	Area (km²) 1,859.3	% 34.3	Area (km²) 1,557.9	% 28.8	Area (km²) 1,497.2	% 27.7	
0.0004 - 0.1488 0.1488 - 0.3955	1,576.3 784.3	29.1 14.5	Area (km²) 1,859.3 821.7	% 34.3 15.2	Area (km²) 1,557.9 966.9	% 28.8 17.9	Area (km²) 1,497.2 985.9	% 27.7 18.2	
0.0004 - 0.1488 0.1488 - 0.3955 0.3956 - 0.6109	1,576.3 784.3 694.7	29.1 14.5 12.8	Area (km²) 1,859.3 821.7 671.2	% 34.3 15.2 12.4	Area (km²) 1,557.9 966.9 707.8	% 28.8 17.9 13.1	Area (km²) 1,497.2 985.9 802.0	% 27.7 18.2 14.8	
0.0004 - 0.1488 0.1488 - 0.3955 0.3956 - 0.6109 0.6110 - 0.7910	1,576.3 784.3 694.7 2,045.3	29.1 14.5 12.8 37.8	Area (km²) 1,859.3 821.7 671.2 912.2	% 34.3 15.2 12.4 16.8	Area (km ²) 1,557.9 966.9 707.8 735.8	% 28.8 17.9 13.1 13.6	Area (km ²) 1,497.2 985.9 802.0 951.1	% 27.7 18.2 14.8 17.6	
0.0004 - 0.1488 0.1488 - 0.3955 0.3956 - 0.6109 0.6110 - 0.7910 0.7911 - 0.9999	1,576.3 784.3 694.7 2,045.3 314.2	29.1 14.5 12.8 37.8 5.8	Area (km ²) 1,859.3 821.7 671.2 912.2 1,150.4	% 34.3 15.2 12.4 16.8 21.2	Area (km ²) 1,557.9 966.9 707.8 735.8 1,446.4	% 28.8 17.9 13.1 13.6 26.7	Area (km ²) 1,497.2 985.9 802.0 951.1 1,178.6	% 27.7 18.2 14.8 17.6 21.8	

Table S16. Classes of vulnerability of the forest to forest fires.

Figure S11. Area vulnerable to understory forest fires in the study area.

Figure S12. Maps of the vulnerability of the forest to understory fires. (A) forest-vulnerability map calculated from variables not correlated with "secondary roads," plus the "secondary roads" variable and (B) forest-vulnerability map calculated from variables not correlated with "deforestation," plus the "deforestation" variable. The legend below the figure shows the ranges of probability ([0.1]) of the forest being affected by fire.

Figure S-13. Biomass loss (Mg ha⁻¹) by fire-severity class in areas with SL (W/SL) and areas without SL (Wo/SL) considering all forest types in the study area. The lower-case letters above the boxes indicate that there was no significant difference (p < 0.05) between the loss of biomass by fire in previously logged areas and unlogged areas within each severity class.

References

- Barni, P.E., Fearnside, P.M., Graça, P.M.L.A., 2015. Simulating deforestation and carbon loss in Amazonia: impacts in Brazil's Roraima state from reconstructing Highway BR-319 (Manaus-Porto Velho). Environmental Management, 55, 124–1138. http://rd.springer.com/article/10.1007%2Fs00267-015-0447-7
- Barni, P.E., Silva, E.B.R., Silva, F.C.F., 2017. Incêndios florestais de sub-bosque na zona de florestas úmidas do sul de Roraima: Área atingida e biomassa morta. In: Anais do Simpósio Brasileiro de Sensoriamento Remoto 2017. Campinas, SP, Brazil: Galoá, pp. 6280-6287. Available at: https://bityl.co/5JeV. Accessed on: 21 November 2020.
- Bonham-Carter, G., 1994. Geographic Information Systems for Geoscientists: Modeling with GIS. Pergamon, New York, USA. 398 pp.
- Brazil, IBGE (Instituto Brasileiro de Geografia e Estatística), 2021. Produção da Extração Vegetal e da Silvicultura: Tabela289. Available at: https://sidra.ibge.gov.br/Tabela/289. Accessed on: 19 March 2021.
- Brazil, INPE (Instituto Nacional de Pesquisas Espaciais), 2020. Projeto PRODES Monitoramento da Floresta Amazônica por Satélite. São José dos Campos, SP, Brazil: INPE. Available at: https://bityl.co/5JeS. Accessed on: 21November 2020.
- da Silva, R.P., 2007. Alometria, Estoque e Dinâmica da Biomassa de Florestas Primárias e Secundárias na Região de Manaus (AM). Ph.D. Thesis in tropical forest science, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil. https://repositorio.inpa.gov.br/bitstream/1/4966/1/Roseana_Silva.pdf

- Fearnside, P.M., 1995. Global warming response options in Brazil's forest sector: Comparison of projectlevel costs and benefits. Biomass and Bioenergy, 8(5), 309-322. https://doi.org/10.1016/0961-9534(95)00024-0
- Fearnside, P.M., 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management, 90(1), 59-89. https://doi.org/10.1016/S0378-1127(96)03840-6
- Figueiredo Filho, D.B., Silva Junior, J.A., 2009. Desvendando os mistérios do coeficiente de correlação de Pearson (r). Política Hoje, 18(1), 115-146. https://periodicos.ufpe.br/revistas/politicahoje/article/view/3852/3156
- Higuchi, N., Santos, J., Ribeiro, R.J., Minette L., Biot, Y., 1998. Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia brasileira. Acta Amazonica, 28(2), 153-166. https://doi.org/10.1590/1809-43921998282166
- Nogueira, E.M., Nelson, B.W., Fearnside, P.M., 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management, 208(1-3), 261-286. https://doi.org/10.1016/j.foreco.2004.12.007
- Nogueira, E.M., Fearnside, P.M., Nelson, B.W., Barbosa, R.I., Keizer, E.W.H., 2008. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from woodvolume inventories. Forest Ecology and Management, 256(11), 1853-1857. https://doi.org/10.1016/j.foreco.2008.07.022
- Saldarriaga, J.G., West, D.C., Tharp, M., Uhl, C., 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76, 938–958. https://doi.org/10.2307/2260625
- Silveira, L.H.C., Rezende, A.V., Vale, A.T., 2013. Teor de umidade e densidade básica da madeira de nove espécies comerciais amazônicas. Acta Amazonica, 43(2), 179–184. https://doi.org/10.1590/S0044-59672013000200007
- Soares-Filho, B.S., Ferreira, B.M., Filgueira, D.S., Rodrigues, H.O., Hissa, L.B.V., Lima, L.S., Machado, R.F., Costa, W.L.S., 2014. Dinamica project. Remote Sensing Center. Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil. Available at: http://www.csr.ufmg.br/dinamica/. Last access: 12 June 2020.