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Logging Amazon forest increased the severity and 1 

spread of fires during the 2015-2016 El Niño  2 
 3 
Abstract. Forest fires degrade Amazon forest and its natural functions. Logging, 4 
deforestation and the increased frequency of prolonged droughts have contributed to 5 
the high recurrence of forest fires in the Amazon. Fires have impacted areas that, until 6 
recently, were considered immune to fire, such as the southern portion of the Brazilian 7 
state of Roraima, which is characterized by forest types that occur in environments 8 
with high natural humidity but that are now strongly impacted by selective logging 9 
(SL). The objective of this study was to determine the severity and spread of fire in the 10 
forests of southern Roraima, taking as a reference the great forest fire that occurred 11 
during the 2015-2016 El Niño. We mapped fire scars and forest biomass from remote 12 
sensing and data from forest inventories in a 6657.3 km2 study area, of which 6512.4 13 
km2 (97.8%) had originally been forest and 5412.3 km2 (81.3%) was still forest in 14 
2016. The 2015/2016 fires affected an estimated at 682.2 km2, or 12.6% of the area 15 
that was still forest in 2016. Vulnerability maps of the forest were made using the 16 
weights-of-evidence method. The biomass impacted by fire totaled 26.4 × 106 Mg, 17 
representing 9.5% of the total mapped for the study area (277.4 × 106 Mg). The 18 
biomass killed by the fire totaled 5.8 × 106 Mg, representing 22.0% of the biomass 19 
affected by the fires. The highest level of fire severity (very strong) proportionally 20 
affected 84.6% more forest biomass inside than outside SL areas. Forest vulnerability 21 
to fires increased by 265.5% in terms of area and by 400.7% in terms of biomass when 22 
exposed to SL. Logging also increased the severity of fires when they occurred: a 23 
hectare of burned forest was 85.9% more likely to have a “very strong” fire if it had 24 
been previously logged, and burned areas that had been logged lost, on average, 2.9% 25 
more of their pre-fire biomass to the fire than those that had not been logged (86.5 Mg 26 
ha-1 versus 84.0 Mg ha-1). Considering only the ombrophilous forest, the mean 27 
biomass of forest that was logged and burned was 310.7 Mg ha-1, or 30.8% lower than 28 
the mean biomass of 448.7 Mg ha-1 in logged but unburned areas, showing a 29 
substantial biomass loss to fire (average of 138.0 Mg ha-1). SL more than doubled the 30 
impact of fire on biomass loss as compared to the impact of the logging itself. In 31 
addition to its contribution to carbon emissions and other impacts, the amplifying 32 
effect of SL on forest fires indicates that the assumption that authorized forest 33 
management projects in Amazonia are sustainable is unwarranted. The future role of 34 
this practice should be rethought, existing projects should be subject to close 35 
inspection and control, and unauthorized logging should be identified and repressed. 36 
The policy of allowing sale of wood from clearcutting projects should be rethought 37 
because it provides a loophole for laundering wood from illegal logging. 38 
 39 
Keywords: Environmental modeling; land use; land cover; Remote sensing; Amazon 40 
 41 
1. Introduction 42 

Forest fires are a threat to the integrity and biodiversity of forests (McLauchlan et 43 
al., 2020), and to the Amazon forest’s carbon storage and hydrological cycling 44 
functions (da Silva et al., 2018; Fearnside, 2008; Fearnside et al., 2013; Rappaport et 45 
al., 2018; Ziccardi et al., 2019). The ignition sources of forest fires in the Amazon are 46 
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the result of human actions, such as burning in nearby newly cleared forest or for 47 
pasture maintenance or for slash-and-burn family farming, while selective logging 48 
plays an important role in making the forest vulnerable to the entry and propagation of 49 
fire (Alencar et al., 2006; Aragão and Shimabukuro, 2010; Berenguer et al., 2014; 50 
Brando et al., 2014, 2019; Uhl and Buschbacher, 1985; Xaud et al., 2013). SL has 51 
been indicated as one of the factors for the spread of forest fires even in places that are 52 
distant from the main foci of deforestation (Alencar et al., 2015; Broadbent et al., 53 
2008; Hethcoat et al., 2020; Silva et al., 2018). 54 

Prolonged drought events driven by the increasing frequency of severe El Niño 55 
events have a direct effect on the spread of forest fires in the Amazon (Aragão et al., 56 
2018; Jiménez-Muñhoz et al., 2016; Meira-Junior et al., 2020; Nepstad et al., 2004, 57 
2007), as do the effects of changes in land use and cover and predatory logging 58 
(Brando et al., 2014, 2019). The frequency of forest fires has increased in areas that 59 
(until recently) were considered immune to fire due to the natural humidity of the 60 
forest; however, the factors that attenuate or amplify fire occurrence are still little 61 
studied (Barni et al., 2015a; da Silva et al., 2018; Fonseca et al., 2017; Turubanova et 62 
al., 2018). 63 

The Amazon provides essential environmental services (e.g., Fearnside, 2008), 64 
and conserving these requires understanding of the interactions between climatic 65 
phenomena and human activities and their effects on the degradation of forest 66 
biomass. Systematic mapping is one of the remote-sensing tools of great importance 67 
for the understanding the spatial distribution and the spreading behavior of forest fires 68 
and it is an intelligent way to provide input for the improvement of public policies to 69 
combat the indiscriminate use of fire. Systematic mapping can provide estimates of 70 
greenhouse-gas (GHG) emissions on a large scale and contribute to improving the 71 
calculations representing biomass and carbon affected by fire and deforestation 72 
(Aragão et al., 2018; Baccini et al., 2012). Brazil’s current National Inventory of GHG 73 
Emissions (Brazil, MCTI, 2020) does not consider emissions from understory forest 74 
fires when calculating emissions from land-use change and forestry. This fact persists, 75 
in part, due to the small volume of work carried out in this area of knowledge and the 76 
large uncertainties involved in calculating the emission factors. 77 

Several spectral indices have been developed or adapted to improve the mapping 78 
of burned areas: NDVI, SAVI, EVI, EVI2, GEMI, BAI, BAIM, NBR, NBR2, CSI and 79 
MIRBI (Bastarrika et al., 2011; Chuvieco et al., 2002; Stropianna et al., 2012). New 80 
approaches based on spectral mixture analysis (SMA) and image fractions (Quintano 81 
et al., 2006) are useful for mapping burned areas. Canopy damage by selective logging 82 
and fire, including their severity (capacity to damage the forest), have been 83 
successfully mapped using the Normalized Difference Fraction Index (NDFI) (Souza 84 
Jr. et al., 2005a, 2013).  85 

Halting or greatly reducing deforestation would clearly have a substantial benefit 86 
in avoiding forest fires because the burning of felled trees in newly cleared areas is a 87 
major source of ignition for fire in adjacent forests. Note that the forest is not 88 
intentionally set on fire, but rather fire escapes from nearby areas that are being burned 89 
either as part of the initial clearing or in subsequent management of the agricultural 90 
and ranching systems.  91 

One of the great challenges we currently face is a better understanding of the 92 
relationship between deforestation behavior and the application of efficient public 93 
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policies (West and Fearnside, 2021). Policies are also needed to help change the 94 
practices used in agriculture and ranching (which today are still based on fire) to the 95 
use of technologies that allow the incorporation into the soil of the biomass of second 96 
growth cut to prepare forest for planting and in the maintenance of pastures free of 97 
invading woody vegetation. However, implementation of these systems has proved to 98 
be difficult in the Amazon because these alternatives to fire demand increased 99 
production costs.  100 

In the southern portion of Brazil’s state of Roraima (in northern Amazonia), 101 
deforestation is strongly stimulated by both legal and illegal logging (Barni et al., 102 
2020). In this region, authorizations to use wood from areas being deforested in 103 
projects licensed for clearcutting by Roraima's State Foundation for the Environment 104 
and Water Resources (FEMARH) provide the documentation for most of the “legal” 105 
logs delivered to sawmills. However, much of the wood that theoretically comes from 106 
the areas approved for clearcutting or for forest management does not actually come 107 
from these areas, but rather from selective logging in forests that are not authorized for 108 
either activity. For example, based on a questionnaire applied to 38% of the sawmills 109 
in Rorainópolis in 2013, Crivelli et al. (2017) reported that 54% of the wood volume 110 
came from deforestation projects, 11% from forest-management projects, and for 35% 111 
of the wood the sawmill owners were “unable to specify” the source.   112 

The great majority of requests to FEMARH from landowners for deforestation 113 
authorizations are merely a means to legalize the sale of timber, rather than for the 114 
stated purpose of clearing land for agriculture and pasture. This is clearly shown by 115 
the fact that most of the 12,480.9 ha of deforestation authorized by FEMARH in 116 
southern Roraima between 2010 and 2015, only 26.2% was actually deforested, as 117 
shown by our mapping based on data from INPE’s PRODES program (Brazil, INPE, 118 
2020). If the authorized areas are, in fact, deforested, they are logged before the 119 
deforestation is done; if these areas are not in fact deforested, the logging is done, and 120 
the unharvested trees are left standing. The volume harvested in the authorized areas is 121 
less than the authorized amount. It is reasonable to suppose that this is because, given 122 
the lack of inspections, it is more profitable for the loggers to cut trees of the most-123 
valuable species in a wider area of forest than it is to harvest the permitted volume 124 
only within the authorized area, where part of the harvest would be composed of less-125 
valuable species.   126 

In January 2021 the municipality (county) of Rorainópolis (in southern Roraima) 127 
was added to the federal “blacklist” of priority locations for actions to prevent, 128 
monitor and control deforestation in the Amazon (Oliveira, 2021). Logging in this area 129 
has only minimal control, and, due to insufficient staff, FEMARH, does not make field 130 
inspections to verify that the specified limits and procedures are respected. The lack of 131 
inspections at the sites undergoing logging or deforestation does not mean that all 132 
parts of the production chain are free of influence from regulations. The federal 133 
environmental agency (the Brazilian Institute for the Environment and Renewable 134 
Natural Resources, or IBAMA) occasionally inspects sawmills to see if the amount of 135 
wood present is compatible with the documentation. In 2018 such an inspection in 136 
Rorainópolis found that virtually none of the sawmills were in compliance, and the 137 
sawmills were shut down (G1, 2018a). Note that 2018 was after the 2015-2016 El 138 
Niño fires that are the subject of the current study and was before the Jair Bolsonaro 139 
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presidential administration began in January 2019, with a notable relaxation of 140 
environmental controls and gutting of IBAMA (see Ferrante and Fearnside, 2019). 141 

Logging is not done by the owners of the land, but instead is done either by 142 
logging teams working for sawmills or by independent loggers who pay a landowner 143 
to allow the timber to be harvested and sold to sawmills. There is clearly no 144 
motivation for sustainability, and those doing the logging may also invade adjacent 145 
properties or government land to remove additional timber. Inspection is limited to 146 
visits to sawmills to check if the volume of stockpiled wood is compatible with the 147 
maximum amounts specified in the licenses. Logging trucks are occasionally stopped 148 
by IBAMA to check the permit for transporting timber (the “document of forest 149 
origin,” or DOF), but if a truck is not stopped the transport permit is often reused 150 
multiple times (Barni and Silva, 2017).  151 

Throughout Brazilian Amazonia the permits issued for transporting timber from 152 
authorized forest-management projects are frequently used in the same way as those 153 
for deforestation projects, with the volume for which the permits are issued coming, in 154 
reality, from logging in other areas, including indigenous lands and other protected 155 
areas where logging is forbidden (Brancalion et al., 2018). Regardless of any official 156 
authorization for “sustainable” forest management in rural properties in our study area, 157 
the actual implementation of such practices was “null or incipient” at the time of our 158 
study (Gimenez et al., 2015). 159 

The present case study aims to determine the effects of SL on the severity and 160 
spread of understory fire in southern Roraima considering the mega forest fire that 161 
occurred in this part of the Amazon during the El Niño event of 2015-2016 (Fonseca 162 
et al., 2017). Areas “affected” by forest fire are areas where an understory fire 163 
occurred during the 2015-2016 El Niño as indicated by burned litter and charring at 164 
the base of trees. Our hypothesis is that SL favored an increase in the severity of fire 165 
and its spread (increased area affected by fire, both by the increased sizes of the fire 166 
scars and by increased number of scars) both within the logged areas and in 167 
neighboring unlogged areas, contributing to greater exposure of forest biomass to fire. 168 
The specific questions the study addresses are: (i) What was the extent of the area 169 
affected by fires and the amount of forest biomass lost in the study area considering 170 
four levels of fire severity? (ii) What was the proportional contribution of SL in 171 
spreading the fire? (iii) What was the area of the exposed forest and what was the 172 
magnitude of forest biomass vulnerable to new forest fires in the study area?  173 

To answer question (i) we used a geographic information system (GIS) and 174 
geoprocessing tools, combined with inventory data, to assess the loss of forest biomass 175 
at four levels of fire severity as defined by Fernandes-Manso et al. (2016) in areas with 176 
signs of SL and in areas without signs of SL. To answer questions (ii) and (iii) we used 177 
the weights-of-evidence method (Barni et al., 2015b, 2020; Soares-Filho et al., 2006; 178 
Leite-Filho et al., 2021). Maps of weights-of-evidence have the ability to capture the 179 
influence of variables that are spatially related to the occurrence of forest fire 180 
(Silvestrini et al., 2011).  181 

Our study will provide improvements for understanding the relationship between 182 
the severity of fire and previous disturbance by SL. Among the uses for this 183 
information is improvement of carbon-emission calculations due to forest degradation 184 
in the Amazon (e.g., Brazil, MCTI, 2020).  185 

 186 
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2. Materials and Methods 187 
2.1 Study area 188 

The study area is located in the southern portion of the state of Roraima, covering 189 
the areas that include the seat of the municipality (county) of Rorainópolis and the 190 
towns (vilas) of Colina and Equador. The area also includes small parts of the 191 
municipalities of Caracaraí (90.5 km2, 1.4% of the study area) and São Luiz (164.2 192 
km2, 2.5%) (Table S1 in the Supplementary Material). The area includes 130.6 km of 193 
Highway BR-174 and 1249.4 km of secondary roads in the settlement projects and 194 
their surroundings (Figure 1). The study area, which comprises 6657.3 km2, was 195 
delimited by clipping a Landsat 8 image for 9 June 2016 (row 231, path 60) and 196 
intersecting it with part of scenes 20NQG and 20NQF of the vector grid of the 197 
Sentinel-2 satellite (https://www.instrutorgis.com.br/download-da-grade-do-satelite-198 
sentinel2/). The vegetation cover is composed of dense rain forest (in its vast 199 
majority), in addition to mosaics of campinarana (oligotrophic woody vegetation) and 200 
ecotone areas between campinarana and dense rain forest (Barni et al., 2016). Under 201 
the Köppen classification system, the region's climate is Af (equatorial forest climate) 202 
(Alvares et al., 2014). 203 

 204 
Figure 1. (A) Map of South America showing the state of Roraima. (B) Municipalities and the 205 
location of the study area. (C) Detailed map of the study area. 206 
 207 
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2.2 Databases 208 
The database consisted of 1.) A vector grid from the Sentinel-2 satellite (which 209 

was used to delimit the study area), 2.) Landsat 5 and 8 images from 2010 to 2016 for 210 
path/row 231/60, obtained from the US Geological Survey (USGS, 2016) (which were 211 
used to map the dynamics of SL and fire) 3.) A Shuttle Radar Topography Mission 212 
(SRTM) image (USGS, 2016) (which served to represent the altitude and the slope in 213 
the study area), 4.) A vector map of forest types (Brazil, PROBIO, 2013), 5.) A map of 214 
deforestation and non-forest obtained from PRODES (Brazil, INPE, 2020), 6.) A 215 
vector map of forest fires (Barni et al., 2017) (used to represent the burned area), 7). A 216 
map of total forest biomass (live + dead and above + belowground) in Roraima (Barni 217 
et al., 2016) (used to estimate biomass loss and affect by fire), 8.) Vector maps of 218 
roads and rivers, 9.) A vector map of hot spots between 1 December 2015 and 23 219 
March 2016 from the AQUA-MT reference satellite 220 
(http://queimadas.dgi.inpe.br/queimadas/bdqueimadas/) (used to represent the initial 221 
scenario of fires in the study area using the weights-of-evidence method), 10.) Forest 222 
inventory data on observed fire and tree mortality in 17 transects measuring 4 × 250 m 223 
(1.7 ha) at the locations of fires that occurred in the study area during the 2015/2016 224 
El Niño event (Table S2) (used to estimate the biomass loss at the plot level). 225 

For the processing of variables (maps), analyses were performed using the 226 
Quantum Gis (QGis) Desktop 2.18.15 (https://www.qgis.org/) geographical 227 
information system (GIS). Maps 2 to 9 (except map 7) and products derived from 228 
these have been used for analyzes with the weights-of-evidence method (Barni et al., 229 
2015b, 2020; Soares-Filho et al., 2006; Leite-Filho et al., 2021) in Dinamica-EGO 5.0 230 
software (https://csr.ufmg.br/dinamica/). Statistical analyses were performed using R 231 
version 3.6.0 software (https://www.r-project.org/).  232 

The database included information on authorizations for logging (authorized area 233 
in ha and volume in m3) in the area licensed for “alternative land use” (deforestation) 234 
from 2010 to 2015 (Table S3); the database also included information on “Sustainable 235 
Forest Management Plans” from 2017 to 2020 (Table S4), which were used to support 236 
the analyses. These data were provided by the State Foundation for the Environment 237 
and Water Resources (FEMARH) under the technical collaboration agreement 238 
001/2020 between FEMARH and the State University of Roraima (UERR). The 239 
methodological sequence for obtaining and analyzing the data followed the flowchart 240 
in Figure 2.  241 
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 242 
Figure 2. Flowchart of the methodology applied in the study area to obtain and 243 
analyze the data. SL = selective logging; NDVI = normalized difference vegetation 244 
index. WEM = weights-of-evidence method. Continuous variables (distance map): SL 245 
= selective logging, Def= deforestation, SR = secondary roads, BR = BR – 174 246 
highway, UC = urban centers, PA = protected area and Wat = water. Categorical 247 
variables: Veg = vegetation, Slo = slope and Alt = altitude. 248 
 249 
2.3 Methods 250 
2.3.1 Fire severity 251 

Assessment of the severity of the fire consuming the combustible material and 252 
killing a fraction of the living forest biomass above and below ground was conducted 253 
according to the technique recommended by Fernándes-Manso et al. (2016), using 254 
vegetation indices, including the normalized difference vegetation index (NDVI). In 255 
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this approach, the NDVI values were extracted from the Landsat 8 image for 9 June 256 
2016 (231/60) corresponding to the burned forest in the study area, and discrimination 257 
was made among four increasing levels of fire severity: light, moderate, strong and 258 
very strong (Table 1). The break points of the classification intervals for NDVI values 259 
were set automatically by the software (Jenks natural breaks: Dent, 1990; Slocum, 260 
1999) in five classes, with the fifth class (-1 to 0.2246) corresponding to pixels with 261 
spurious values, which were excluded from the analysis. In the study by Fernándes-262 
Manso et al. (2016), based on visual interpretation of images from the Pleiades-1A/1B 263 
sensor, the ‘light’ class corresponded to minor or insignificant damage from the fire 264 
scar; the ‘moderate’ class corresponded to a moderately damaged area; the 'strong' 265 
severity level corresponded to a highly damaged area and; the 'very strong' severity 266 
level corresponded to an area totally destroyed by fire. Although the study by 267 
Fernandes-Manso et al. (2016) was carried out in a region of Spain dominated by 268 
Pinus pinaster Ait and Quercus pyrenaica Wild, which is a type of a vegetation 269 
completely different from that in the Amazon, it is important to highlight that in our 270 
study we only used the nomenclature for fire-severity classes based on these authors, 271 
corresponding to the classes for separation of the NDVI values obtained in our study 272 
area. Our choice was based on the familiarity with the use of NDVI and the evaluation 273 
of various vegetation indexes carried out by Fernandes-Manso et al. (2016). These 274 
authors indicated that the NDVI achieved scores similar to that of the normalized burn 275 
ratio (NBR) in a Cox and Snell pseudo-R2 test (0.430 and 0.450) and in a McFadden 276 
pseudo-R2 test (0.289 and 0.247) for NDVI and NBR respectively. In our study, NDVI 277 
was highly correlated with NBR (Figure S1 and S2; Table S5). 278 
 279 
Table 1. Increasing levels of fire severity observed in the study area. 280 
Level Class NDVI (this study) * NDVI  
0 Light 0.4082 to 0.6031 0.5840 to 0.6195 
1 Moderate 0.3641 to 0.4081 0.5225 to 0.5700 
2 Strong 0.3140 to 0.3640 0.4095 to 0.4495 
3 Very strong 0.2247 to 0.3139 0.2267 to 0.2637 
* Values estimated from Fernándes-Manso et al. (2016). 281 
 282 
2.3.2 Estimation of biomass loss by fire-severity class 283 

We used tree mortality or biomass-loss levels (inventory data) to numerically 284 
define these classes and associate them with the corresponding severity levels. To 285 
estimate biomass loss by fire-severity class, we used loss fractions of forest biomass 286 
(Mg ha-1) derived from the database for the forest inventory in the 17 transects (4 × 287 
250 m: 1.7 ha) carried out between 11 March and 6 April 2016 for trees with DBH ≥ 288 
10 cm. In the 17 plots (14 plots with SL and three plots without SL), 1180 individuals 289 
(694 individuals ha-1) were inventoried, of which 239 individuals (20.3%) had been 290 
killed by fire. Trees that were considered to have been “killed” were observed in the 291 
field (1-3 months after the fires) and judged to be dead based on lack of leaves, 292 
appearance of the bark and signs of severe damage from the fire. The percentages for 293 
estimating biomass loss in trees with DBH ≥ 10 cm were derived from the forest-294 
inventory data. The 10.4% loss percentage represented by the aboveground dead 295 
biomass (litter) and the 2.4% aboveground biomass loss in dead trees with DBH < 10 296 
cm were derived from the study by Barbosa and Fearnside (1999) (Table 2).  297 
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 298 
Table 2. Fractions of biomass loss from fire used in the GIS raster calculator for calculations 299 
of biomass loss by fire severity class. 300 

Severity Litter 
DBH 
<10 
cm 

DBH 
≥10 
cm 

Loss fraction 

Light 0.104 0.024 0.022 0.150 
Moderate 0.104 0.024 0.074 0.202 
Strong 0.104 0.024 0.151 0.279 
Very strong 0.104 0.024 0.329 0.457 
 301 

The volume is converted to biomass using the average basic density of 0.770 of 302 
the 11 species that contributed the most wood volume to nine sawmills surveyed in 303 
2013 in Rorainópolis by Crivelli et al. (2017), based on basic density values from 304 
Fearnside (1997), Nogueira et al. (2005) and Silveira et al. (2013), weighted by their 305 
respective percentages of the volume processed by the sawmills (Table S6). “Basic 306 
density” of wood is oven-dried mass divided by saturated volume. A calculation is 307 
made of the biomass removed in the harvested logs, together with the loss of 308 
aboveground live biomass in the crowns and stumps of the harvested trees and in 309 
collateral damage to unharvested trees caused by the logging operations 310 
(Supplementary Material, Section 1.7: Table S7). The biomass lost (35.67 Mg ha-1), 311 
when divided by the average total biomass value (435.3 Mg ha-1) of the dense 312 
ombrophilous forest in the study area (Barni et al., 2016), results in a loss fraction of 313 
0.082. In this approach it is assumed that the SL had already been removed this 314 
fraction of the biomass, and the fraction is therefore applied as a constant regardless of 315 
the fire-severity class. 316 

To derive these loss percentages and assign the biomass values corresponding to 317 
each severity class, the DBH ≥ 10 cm information on the inventoried trees (1180 318 
individuals) was converted into aboveground dry biomass according to the model ln 319 
(P) = β0 + β1 ln (DBH) + ε, proposed by Higuchi et al. (1998), where P is the fresh 320 
weight (kg-1) of the biomass, β0 (-1.497) and β1 (2.548) represent the regression 321 
parameters (intercept and slope), ln is the natural logarithm and ε is the random error. 322 
Values for fresh biomass (kg ha-1) were converted to dry biomass (Mg ha-1) based on 323 
the mean water content of 40% found by Higuchi et al. (1998) (Table S2). 324 

In order to represent the fire-damage classes overlapping the inventory transects, a 325 
15-m buffer was created around the length of each transect. Next, the fire-severity 326 
class values were extracted from a raster file intersecting the buffer areas (Figure 3A); 327 
the average percentages were attributed for the biomass loss corresponding to each 328 
class indicated in the pixels, which were estimated by the model, and the total biomass 329 
was calculated for the 17 transects (Figure 3B). 330 

 331 
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 332 
Figure 3. (A) Levels of fire severity along a plot inventoried in the field and (B) 333 
corresponding rates (fractions) of biomass loss. Equal letters = not significant; * = significant 334 
at 5%; *** = significant at 0.1% statistical probability. 335 
 336 
2.3.3 Biomass of fire-affected areas by forest type 337 

The biomass (Mg ha-1) affected by the fires in each vegetation type was calculated 338 
using the biomass map prepared by Barni et al. (2016) in a grid-cell (raster) format. 339 
This biomass estimate was based on bole volumes of individual trees ≥ 31.8 cm DBH 340 
surveyed by the RADAMBRASIL project (Brazil, RADAMBRASIL, 1973-1983) in 341 
298 1-ha plots (of which 119 were in Roraima and the remainder within 100 km of the 342 
state’s borders). Volumes were converted dry biomass based on the wood basic 343 
density by species from Fearnside (1997), and adjustments for crowns, small trees, 344 
hollow trees, irregular trunks and other components were based on Nogueira et al. 345 
(2008).  346 

Initially the biomass map was intersected with the forest-typology map, also in 347 
raster format, and the study area was cut out. The study area contained three 348 
vegetation types: Dense ombrophilous forest (DS), Campinarana (Ld) and Ecotones 349 
(LO). Note: the two-letter vegetation codes are those used by the Brazilian Institute for 350 
Geography and Statistics (IBGE). The biomass map for the study area was intersected 351 
with the forest-fire raster map (value=1). These map-algebra operations were 352 
performed using the raster calculator in the GIS. The same procedure was carried out 353 
to calculate the biomass loss caused by deforestation up to 2016 (Brazil, INPE, 2020).  354 
 355 
2.3.4 Characterization of selective logging in the study area 356 

To characterize SL in terms of the area that was logged and affected by understory 357 
forest fires in the entire study area, a systematic mapping of timber activity in the 358 
region was carried out between 2007 and 2015 using 16 satellite images (path/row 359 
231/59 and 231/60) from Landsat 5 (2007 to 2011) and Landsat 8 (from 2013 to 2015) 360 
(Table S8 and Figure S3). For this purpose, RGB and NDVI images were interpreted 361 
visually, proceeding to manual editing in vector files of the SL areas in each image, as 362 
in Barni et al. (2015a) (Supplementary material: Section 1.8). As a way of assessing 363 
the influence of SL on the spread of fire and on the severity classes in the study area, 364 
tests were carried out to compare the NDVI values from 2016 with the NDVI values 365 
of the images from 2010, 2013, 2014 and 2015 at the same geographical coordinates in 366 
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areas affected by fires and with a history of SL. Additionally, analyses of fire severity 367 
were carried out according to the year of selective logging occurrence (Table S9). 368 
 369 
2.3.5 Fire-vulnerability map with weights-of-evidence method 370 

The map of the forest's vulnerability to fire was obtained from the calculation of 371 
the transition-probability map using the weights-of-evidence method (Supplementary 372 
material: Figures S4, S5 and S6). This method stores information as numerical values 373 
that are spatially referenced (x and y coordinates) representing the contribution 374 
(evidence) of each variable in favoring or inhibiting the occurrence of the event under 375 
study (in our case, fire), based on the occurrence of this event in the past. In other 376 
words, the weights-of-evidence method has the ability to capture the influence of a set 377 
of variables related to the spatial occurrence of a given event in the past and use that 378 
evidence (weights-of-evidence coefficients) to build a spatial-probability map for the 379 
occurrence of the event in question. This ability has often been exploited in simulating 380 
future deforestation and forest-fire scenarios in the Amazon (Barni et al., 2015b, 2020; 381 
Leite-Filho et al., 2021; Silvestrini et al., 2011; Soares-Filho et al., 2006). 382 

For the preparation of the vulnerability map of the forest to understory forest fires, 383 
a methodological sequence was used that involved the preparation of initial and final 384 
scenario maps in Dinamica-EGO software. First, a land-use map was prepared with 385 
the value classes (1) Deforested, (2) Forest and (3) Fire. The latter consists of 216 hot 386 
spots detected in the study area by the AQUA-MT satellite between 1 December 2015 387 
and 23 March 2016 (the time window when fire occurrences intensified in the study 388 
area), transformed into pixels, representing the fire class (value=3) before the spread 389 
of the fire (initial scenario). Second, a land-use map was prepared with the same 390 
classes, but with the fire class applied to all of the fire spread detected in the study area 391 
in 2016 (final scenario), which was obtained from the mapping carried out by Barni et 392 
al. (2017) (Figure 4). 393 
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 394 
Figure 4. Input scenarios for the method of calculating the weights-of-evidence using 395 
Dinamica-EGO software. (A) 2015-2016 Scenario (initial map) prepared with hot spots 396 
between 1 December 2015 and 23 March 2016. (B) Scenario in 2016 (final map) after the 397 
occurrence of fires in the region. 398 

 399 
Twelve maps were created with the same number of columns and rows. Seven of 400 

the maps were for environmental variables: (1) forest (vegetation), (2) deforestation, 401 
(3) fire, (4) SL, (5) SL class year (area of polygons of SL mapped each year), (6) 402 
hydrography (water courses), (7) relief and (8) slope. Four maps were for 403 
infrastructure: (9) urban centers, (10) secondary roads, (11) BR-174 and (12) protected 404 
areas (Indigenous Lands + conservation units). This step also involves the creation of 405 
maps of distance-intervals (ranges) to fire scars for eight continuous variables and 406 
creation of class intervals for the other four variables (vegetation, altitude, slope and 407 
SL class year), which are considered to be categorical. The mapped variables (as a 408 
data stack) served as inputs for calculating the weights-of-evidence coefficients 409 
(Figures S3 and S4) using Dinamica-EGO software. 410 

In addition to these initial procedures, a transition matrix was also calculated, 411 
which is an array of the rates that the software uses to perform the transitions of pixels 412 
between states. For example, a pixel representing forest (value=2) at time t1 can 413 
convert to a pixel representing fire (value=3) at time t2, in a simulated scenario. In the 414 
simulation model, the transition matrix provides the number of pixels that are ready 415 
for the change of state, while the transition probability map directs the change to the 416 
areas of greatest probability.  417 
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Correlation tests were performed to determine the association between variables 418 
and to assess their spatial dependence (Bonham-Carter, 1994). Correlations with a 419 
value of r ≥ 0.5 were considered to represent a strong association between the 420 
variables (Cohen, 1988). These steps were performed using Dinamica-EGO software 421 
(Supplementary Material). 422 
 423 
2.3.5.1 Assessment of the effect of SL on fire spread 424 

It is important to note that fire-severity classes were not considered in assessing 425 
the effect of SL on the spread of fire in the forest. To assess fire spread we considered 426 
five vulnerability classes that were calculated and mapped using the weights-of-427 
evidence method. The following procedures were performed to test the effect of SL on 428 
the spread of fire in the study area: 1.) making a transition-probability map using all of 429 
the variables in the database; 2.) making a transition-probability map using all of the 430 
database variables except for the SL variable; 3.) making a transition-probability map 431 
using only database variables with little or no correlation with SL and SL class year 432 
and; 4.) making a transition-probability map using only SL and SL class year together 433 
with the database variables with little or no correlation with SL. These procedures 434 
were also carried out for the variables “deforestation” and “secondary roads,” which 435 
were highly correlated with SL in the study area (Table S10). The sizes (km2) of five 436 
classes of vulnerability of the forest to fire were then compared on the maps. The 437 
difference (in %) in the size of the area of the class with the greatest vulnerability to 438 
fire was calculated by comparing the map made using the set of variables that included 439 
both SL and the variables without correlation with SL with the probability map 440 
calculated only with the set of variables without correlation with SL. The percentage 441 
difference was considered to represent the effect of SL on the spread of fire in the 442 
study area. For the purpose of comparison and to serve as a reference in order to 443 
support the discussions, the same procedure described above was performed for the 444 
variables “deforestation” and “secondary roads.” The effects of the variables were also 445 
expressed in terms of biomass (Mg) vulnerable to fire in the study area. In this case, 446 
only the area in the class with the highest probability of fire was considered for the 447 
purpose of applying the biomass calculations in making the comparison between the 448 
models. 449 

 450 
2.3.6 Validation of models 451 

To validate the simulation models, the reciprocal-similarity comparison technique 452 
was used (Soares-Filho et al., 2008) based on adaptation of the fuzzy-similarity 453 
method and the Kfuzzy method, which is considered to be equivalent to the Kappa 454 
statistic and takes into account the fuzziness of both location and category within a cell 455 
neighborhood (Hagen, 2003). The method is based on the state of the central cell of 456 
each window, observing the similar and divergent states of the cells in its 457 
neighborhood (or proximity) as a parameter of comparison between the maps. In this 458 
approach, the simulated fire scenario is compared with the 2015-2016 scenario (initial 459 
scenario) and with the 2016 scenario (map of fire that actually occurred) using 460 
“windows” of different sizes in an exponential decay function (truncated outside of a 461 
window size of 11 × 11 cells) (Figure S7). The exponential decay function records the 462 
scores of the comparisons between maps produced with increasing window sizes (3 × 463 
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3 pixels, 5 × 5 pixels, …, 11 × 11 pixels), and the test result (%) is returned as a .csv 464 
table file (Figure S7). The window acts as a filter covering all of the lines in the raster 465 
map to make the comparison (Figure S7). Models are generally considered to be valid 466 
for simulation when the similarity value for the maps being compared is ≥ 50% (Barni 467 
et al., 2015b, 2020). The tests were carried out in a sub-model of the Dinamica-EGO 468 
software (Figure S8). 469 
 470 
3. Results 471 
3.1 Areas of occurrence 472 

The area of understory forest fires that occurred in our study area during the 2015-473 
2016 El Niño event totaled 682.2 km2, affecting 12.6% of the remaining original 474 
forest. The cumulative deforestation in 2016 (observed since the 1970s and 1980s) in 475 
this region (1102.1 km2) represented 16.6% of the study area and 16.9% of the area 476 
that was originally forest (Table S11). The cumulative deforestation attributed to the 477 
portion of the municipality of Rorainópolis located within the study area represented 478 
90.8% of the deforestation observed in the entire municipality up to 2016 (1151.2 km2: 479 
Brazil, INPE, 2020) (Table S1). 480 

In the study area, SL mapped between 2007 and 2015 totaled 644.8 km2. Of this 481 
SL area, 28.0% (180.7 km2) was also affected by understory forest fire (Table S11 and 482 
Figure S3).  483 
3.2 Estimation of biomass in areas affected by forest fires 484 

The largest amount of biomass affected by the fires (22.7 × 106 Mg) was under 485 
ombrophilous forest (dense rain forest) and the smallest (0.3 × 106 Mg) was found in 486 
ecotone forests (Table S12). The fire scars spread along the BR-174 and its secondary 487 
roads from the vicinity of the Rorainópolis municipal seat to an area near Vila 488 
Equador (Figure 1). 489 

The total biomass affected by fires in our study area was estimated at 26.2 × 106 490 
Mg, while the biomass affected by fires in the SL area was estimated at 6.7 × 106 Mg 491 
(Table S12). This represents 24.1% of the total biomass in areas subjected to SL, 492 
estimated at 27.9 × 106 Mg. Estimation of forest biomass was performed for each 493 
forest type, separating areas of SL and areas without SL are presented in Table S13. 494 
Estimates of biomass loss from deforestation until 2016 are presented in Table S14 for 495 
in the study area as a whole and separately for each forest type. 496 

 497 
3.3 Fire-severity gradient area 498 

The most widespread severity level in the study area was the light-intensity class 499 
(36.2%), considering areas burned without SL. When considering the same severity 500 
level but in areas with SL, the light-intensity class decreased by 27.9% in relation to 501 
the area without SL. On the other hand, when considering the highest level of fire 502 
severity (very strong) the area under SL shows an increase of 85.9% in terms of 503 
incident area of this class in relation to the area without SL (Table 3). This means that, 504 
if a hectare of forest burns, it is 85.9% more likely to be a very-strong burn if that 505 
hectare had been previously logged.  506 
  507 
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 508 
Table 3. Area of severity classes of understory fire without selective logging and with. 509 
  Total Wo/SL   W/SL   

Severity Area 
(km2) % Area 

(km2) % Area 
(km2) % Difference with 

SL% 
Light 246.5 36.2 195.5 39.1 51.0 28.2 -27.9 
Moderate 229.0 33.5 170.6 34.0 58.3 32.3 -5.3 
Strong 140.7 20.7 95.5 19.1 45.2 25.0 31.2 
Very strong 64.9 9.6 38.8 7.8 26.1 14.5 85.9 
Total 681.1 100 500.4 73.5 180.7 26.5 _ 
W/SL = with selective logging. Wo/SL = without selective logging. 510 
 511 
3.4 Vulnerability of the forest to understory fires in SL areas 512 

The assessment of the vulnerability maps showed that SL influenced the spread of 513 
fire in the study area during the 2015/2016 El Niño event within the fire-severity 514 
classes. Analyses of NDVI images show a positive correlation between fires and the 515 
logging carried out in years immediately prior to the fires. On the other hand, this 516 
effect was not observed when comparing the NDVI values of the images of locations 517 
that had been subjected to SL in 2010 with the NDVI values obtained in the same 518 
places after the 2015/2016 fires (Figure S9).  519 

These results are confirmed by annual SL data from satellite images (Table S8) 520 
and analysis of the distances from the edge of the forest to the locations of the fires 521 
and the SL. The largest fire recorded in areas affected by SL (161.2 km2) occurred in 522 
the distance range from 0 to 1200 m, representing 89.3% of the total spread of fire 523 
(180.5 km2) in the area with SL. The years that contributed most to the area of SL 524 
were 2013, 2014 and 2015, providing the SL-disturbed area through which the fires 525 
crossed and spread to neighboring areas (Figure 5A). Beginning in 2011 there is a 526 
strong inversion of the severity classes, with locations with more-recent SL burning 527 
with greater severity in the 2015/2016 fires (Figure 5B, Table S9). 528 

 529 
Figure 5. (A) Annual contribution of areas impacted by SL that were burned during the 530 
2015/2016 El Niño event in the study area. (B) Gradient of fire severity depending on the year 531 
of logging. 532 
 533 
3.5 Estimation of biomass loss by fire-severity class 534 

The biomass affected by forest fires totaled 26.4 × 106 Mg (Table 4), with the 535 
biomass in the fire-affected SL areas totaling 6.7 × 106 Mg (25.4 of the fire-affected 536 
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biomass), while the biomass computed outside of the SL areas represented 74.6%. The 537 
highest severity level (“very strong”) affected, proportionally, 84.6% (14.4 versus 7.8) 538 
more biomass in SL areas than outside of these areas (Table 4). 539 
Table 4. Estimated biomass affected by fire for each fire-severity class considering all forest 540 
types. 541 
 542 

 
                    

Severity Area Wo/SL 

% of 

biomass 

Area W/SL 

% of 

biomass 

SL 

% of 

biomass 

Total 

 
  (km2) 

(106 

Mg) 
(km2) 

(106 

Mg) 

(106 

Mg) 

(106 

Mg) 

Light 195.5 7.5 38.1 51.1 1.9 28.2 0.17 28.3 9.4  

Moderate 170.6 6.8 34.6 58.3 2.2 32.3 0.19 32.4 9.0  

Strong 95.5 3.9 19.5 45.2 1.7 25.2 0.15 25.2 5.6  

Very 

strong 
38.8 1.5 7.8 26.1 1.0 14.4 0.09 14.4 2.5  

Total 500.4 19.8 100.0 180.7 6.7 100.0 0.6 100.0 26.4  

W/SL = with selective logging. Wo/SL = without selective logging. 543 
 544 

The largest amount of biomass killed by fires (1.8 × 106 Mg; mean 79.1 Mg ha-1) 545 
was in the “moderate-loss” class, representing 30.8% of the total estimated biomass. 546 
The smallest amount of biomass (1.1 × 106 Mg; mean 176.3 Mg ha-1) was in the class 547 
with the highest fire severity, representing 19.5% of the total biomass killed by the 548 
fires. Considering the level of greatest severity, the loss in the SL areas was, 549 
proportionally, 68.3% greater than in the areas without SL (27.6% versus 16.4%, 550 
respectively) (Table 5 551 
  552 
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 553 
Table 5. Estimation of biomass killed by fire for each fire-severity class considering all forest 554 
types. 555 
    Wo/SL     W/SL     Total   

Severity Biomass 
(106 Mg) % Mean 

(Mg ha-1) 
Biomass 
(106 Mg) % Mean 

(Mg ha-1) 
Biomass 
(106 Mg) % Mean 

(Mg ha-1) 

Light 1.1 26.5 58.1 0.3 17.8 55.7 1.4 24.2 57.6 
Moderate 1.4 32.0 80.3 0.4 27.5 75.5 1.8 30.8 79.1 
Strong 1.1 25.0 111.8 0.5 29.5 104.6 1.5 26.2 109.5 
Very 
strong 0.7 16.4 181.1 0.4 27.6 169.3 1.1 19.5 176.3 

Dead 4.3 21.7 84.1 1.6 23.9 92.6 5.9 22.3 86.4 
Affected 19.7 7.9 _ 6.7 24.3 _ 26.4 9.5 387.6 
Total 249.8 90.1 _ 27.6 9.9 _ 277.4 100.0 _ 

 556 
W/SL = with selective logging. Wo/SL = without selective logging. 557 

 558 
An increase in biomass loss with increasing fire severity is apparent, and the loss 559 

is greater at each intensity of fire if the area had been subjected to SL. If one considers 560 
only omprophilous forest, which represents 78.1% of the area affected by fire and 561 
87.8% of the logged area, the differences between logged versus unlogged areas are 562 
significant Kruskal-Wallis test, p < 0.05) (Figure 6). If all forest types are considered, 563 
the data suggest the same pattern but the added variation from forest-type effects 564 
makes the difference statistically nonsignificant (Figure S-13).  565 



18 

 

18 

 

 566 
Figure 6. Biomass loss (Mg ha-1) by fire severity class considering areas without SL (Wo/SL) 567 
and areas with SL (W/SL) in the study area. 568 
 569 
 570 
3.6 Calculation of the weights-of-evidence coefficients  571 

Of the 12 variables used to calculate the coefficients of the WEs, six showed a 572 
strong correlation between them (r ≥ 0.5). The highest correlation was between 573 
cumulative deforestation in the study area and secondary roads, with r = 0.86, and the 574 
second-highest value was between SL areas with secondary roads, with r = 0.78 (Table 575 
S10). Theoretically, this means that these variables are overlapping in the model and 576 
would explain, basically, the same things. When two variables are correlated, it is 577 
recommended that one of them be removed from the prediction model, with the 578 
variable that remains being the one that is more consistent with the conceptual or 579 
theoretical model of the phenomenon to be modeled or predicted (Soares-Filho et al., 580 
2008). 581 

The SL variable (a continuous variable) had the highest value for the weights-of-582 
evidence coefficient (W = +1.15 to 0.99) between 0 to 480 m away from the fires, and 583 
this coefficient decreased to a value close to zero at ~2000 m. Similar behavior was 584 
also observed for the variables “secondary roads” (W = + 0.68 to 0.83) and 585 
“deforestation” (W = + 0.44 to 1.06) in the first 480 m from the areas affected by fires 586 
(Figure 7). These distances were expressed as intervals of 120 m in the Dinamica-587 
EGO software and are compatible with the 30-m pixel size of the Landsat 8 image and 588 
of the weights-of-evidence maps of the variables used in the study. The response or 589 
dependent variable “fire” had the highest weights-of-evidence coefficients. These 590 
values indicate a high probability of transition from forest pixels (value=2) located 591 
close to the edges of the forest (value=1) to pixels representing burned areas (value=3) 592 
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on the simulated or modeled map. Note that most of the variables strongly repel the 593 
transition of pixels located from ~2500 to 5000 m, with the weights-of-evidence 594 
coefficients having values less than zero.  595 

 596 

 597 
Figure 7. Coefficient of the weights-of-evidence (W + or W -) for seven variables that explain 598 
the occurrence of forest fires (dependent variable) in the study area. The distance is subdivided 599 
into multiple intervals of 120 m. 600 
 601 

The behavior of the weights-of-evidence coefficients of SL (and of other variables 602 
correlated with SL) shown in Figure 8 can be explained by the heavy fragmentation of 603 
the forest in the study area. For example, on both sides of Highway BR-174 there are 604 
secondary roads and cumulative deforestation adjacent to these roads (both inside and 605 
outside of settlement projects). The roads fragment the forest at regular intervals of 2 606 
to 4 km, depending on the degree of deforestation at each site. The sizes of the forest 607 
fragments limited the weights-of-evidence (W+) of the main variables that explain the 608 
behavior of fire in the study area at distances between 1000 and 2000 m from the edge 609 
of the fire scars in the forest (Figure 7).  610 

Corroborating these results, the areas affected by forest fires and SL gradually 611 
decreased in successive 120-m intervals from the edge of the forest up to a distance of 612 
1200 m. The first interval (0 to 120 m) had the largest area affected by fire (114.9 km2; 613 
20.1%) and also had the largest area affected by SL (113.8 km2; 24.3%). Considering 614 
the entire range of 1200 m from the edge of the forest, the area burned totaled 571.7 615 
km2 (83.9% of the 682.2 km2), SL areas totaled 468.8 km2 (72.7% of the 644.8 km2) 616 
and the SL areas in areas affected by fire totaled 161.2 km2, or 89.4% of the 180.4 km2 617 
total (irrespective of distance: Table S15) burned in the SL areas (Figure 8A; Table 618 
S15). The ratio of the area affected by SL to the area affected by fire (SL / Fire) 619 
showed a continuous growth beginning with the second distance interval (121-240 m 620 
from the forest edge) up to a distance of 1200 m (Figure 8B). The SL area affected by 621 
fire as a percentage of the SL area as a whole (SL x Fire / SL) had behavior opposite to 622 
that of SL / Fire; that is, the areas of occurrence decreased with increasing distance 623 
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from the edge of the forest. In turn, the area of SL affected by fire as a percentage of 624 
the area burned as a whole (SL x Fire / Fire) showed a more stable behavior when 625 
compared to the other variables, with 20.6% in the first interval, increasing to 26.5% 626 
in the second interval, and stabilizing at 31.1% (on average) from the third to the last 627 
interval (360 to 1200 m).  628 

These results indicate a strong influence of SL on the spread of the fire in the 629 
study area, especially as exemplified by SL / Fire and SL x Fire / Fire (Figure 8B). 630 
Although this analysis includes only the variable SL, all other variables were also 631 
exposed to the same environmental context in the study area. The values of the 632 
weights-of-evidence calculated for each distance range of the variables contained in the 633 
models ensure the statistical independence of the results (Bonham-Carter, 1994).  634 

 635 

 636 
Figure 8. Fire and SL behavior as functions of distance from the forest edge (in 120-m 637 
intervals). (A) Areas (km2). (B) Interaction between fire and SL (%). Fire = Area affected by 638 
fire; SL = Area of SL; SL x Fire = Area of SL affected by fir; SL / Fire = Ratio of the 639 
area affected by SL to the area affected by fire; SL x Fire / SL = The SL area affected 640 
by fire as a percentage of the SL area as a whole; SL x Fire / Fire = Area of SL 641 
affected by fire as a percentage of the area burned as a whole. 642 
 643 
3.7 Model-validation results 644 

The models were validated in windows that ranged in size from one pixel (30 m) 645 
to seven pixels (210 m). The average similarity observed in these windows, 646 
considering all models, was 63.3%. The map using all variables in the model obtained 647 
the greatest similarity between the modeled maps and the fire observed in 2016, 648 
reaching 50% similarity in a ~70-m window. On the other hand, the worst 649 
performance was by the map from the model that used only the variables that were not 650 
correlated, reaching 50% similarity in a ~112-m window. The other three models had 651 
approximately the same performance, with results between the two extremes and 652 
reaching 50% similarity in a window of ~80-m (Figure S10). 653 

. 654 
3.8 Vulnerability of the forest to understory fires by probability range 655 

Considering ranges of vulnerability to the occurrence of forest fires in the 656 
probability map, areas vulnerable to fire increased by 266.2% in the range with the 657 
highest vulnerability when SL and SL class year were present, as compared to the 658 
reference model (Figure S11). Likewise, when the probability map was modeled with 659 
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the presence of secondary roads, the area of greatest vulnerability to fire increased by 660 
360.4% compared to the reference model (Figure 9; Table S16). 661 

 662 

 663 
Figure 9. Percentage of vulnerability of the forest as a function of the ranges of probability 664 
(0.1) of fire occurrence in the study area. 665 

 666 
All of the vulnerability maps had the class with the lowest probability of fire 667 

(0.0004 to 0.1488) as the most representative area in the modeling. This can be 668 
explained simply by the fact that these areas are relatively far from the sources of 669 
ignition by human action and, therefore, would be naturally protected. This can be 670 
clearly seen in continuous blocks of forest on both sides of Highway BR-174 in the 671 
map calculated with the entire set of variables (areas south of Vila Colina in the south-672 
central part of the map) (Figure 10A). To a lesser extent it can also be seen in Figure 673 
10C. On the other hand, the map considered as a reference, which represented fires 674 
calculated by the model composed of three explanatory variables not correlated with 675 
the SL (altitude, slope, and vegetation) (Figure 10B), showed these blocks of forest as 676 
vulnerable to fire. This effect can be explained by the absence of protected areas in the 677 
model's data set. Because the protected areas were correlated with SL, this effect was 678 
less evident in the calculated map containing SL in the data set. The maps of 679 
vulnerability to fires calculated with the variables “secondary roads” and 680 
“deforestation” are shown in Figure S12. 681 
 682 
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 683 
Figure 10. Maps of vulnerability of the forest to understory fire. In (A) forest vulnerability 684 
map calculated with the entire set of variables (n = 12). In (B) vulnerability map calculated 685 
from a set of three variables (altitude, vegetation and slope) that are not correlated with SL 686 
(reference model). In (C) forest vulnerability map calculated from the variables not correlated 687 
with SL and plus the SL and SL class year variables. The legend below the figure shows the 688 
ranges of probability [0.1] of the forest being affected by fires. 689 
 690 

The exposure of forest biomass to fires in the study area was 457.2% higher when 691 
considering the variable “cumulative deforestation” compared to the reference model 692 
(Figure 10B), while SL and SL class year exposed 407.0 % more forest biomass when 693 
compared to the reference model. This percentage (400.7 %) can be considered to 694 
represent the effect of SL on the spread of fire in the study area. The variable 695 
“secondary roads” exposed 591.2% more biomass to fire than the reference model 696 
(Figure 11). Likewise, SL and SL class year exposed 266.2% more forest area to the 697 
range with the highest risk of vulnerability compared to the reference map, while 698 
deforestation exposed 9.0% more area than SL. Back roads exposed 360.4% more 699 
forest area than the reference map (Figure S11). 700 

 701 
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 702 
Figure 11. Biomass vulnerable to understory forest fires in the study area.  703 
 704 
3.9 Effect of logging on biomass losses due to fire 705 
 706 

The biomass losses in burned areas are summarized in Table 6, indicating a total loss of 707 
5.22 × 106 Mg of biomass stock due to fire. In the burned areas the percentage of biomass lost 708 
is 23.2% in areas that had been selectively logged, and 21.6 % in areas without selective 709 
logging. 710 

 711 
The effects of selective logging on losses to fire are calculated in Table 7. The effect of 712 

logging in increasing the area burned resulted in 1.22 × 106 Mg of biomass loss due to fire 713 
(Column G), while the effect of selective logging in increasing the severity of fire and 714 
resulting per-hectare biomass loss in the area that would have burned anyway even without 715 
logging represents 1.25 × 106 Mg of biomass loss (Column M). As compared to the biomass 716 
loss from the logging itself (including collateral damage) of 1.69 × 106 Mg of biomass, the 717 
effect of logging on increasing the area burned increases impact by 72.5% (Column AB), and 718 
the increased fire severity increases the total fire impact to 146.5% (Column AD), that is, more 719 
than doubling the impact of the logging itself.  720 

 721 
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 723 
 724 

Table 6. Summary of biomass losses in burned areas           
 Original forest   SL loss   Affected by fire Loss to fire   
 (unlogged and unburned)         
 

Area Biomass 
stock 

Biomass 
per 
hectare 

Percent 
of 
original  
biomass 

Biomass 
stock 

Biomass 
per 
hectare 

Biomass 
stock 

Biomass 
per 
hectare 

Biomass 
stock 

Biomass Percent  

 per affected  

 hectare biomass  

 (km2) (106 Mg) (Mg ha-1) (%) (106 Mg) (Mg ha-1) (106 Mg) (Mg ha-1) (106 Mg) (Mg ha-1) (%) 

            
Burned areas with SL in ombrophilous forest 152.3 6.63 435.1 8.2 0.54 35.7 6.08 399.4 1.48 97.2 24.3 
Burned areas without SL in ombrophilous 
forest 380.3 16.60 436.5 0 0 0 16.60 436.5 3.58 94.2 21.6 
Total in ombrophilous forest 532.6 23.23 436.1 2.3 0.54 35.7 22.68 425.9 5.06 95.1 22.3 

            
Burned areas with SL in campinarana 28.3 0.71 250.7 8.2 0.06 20.6 0.65 230.1 0.16 56.0 24.3 
Burned areas without SL in campinarana 111.7 2.87 256.8 0 0 0 2.87 256.8 0.63 56.1 21.8 
Total in campinarana 140.0 3.58 255.6 1.6 0.06 20.6 3.52 251.4 0.78 56.1 22.3 
            
Burned areas with SL in ecotone forest 1.2 0.04 333.3 8.2 0.0033 27.3 0.04 306.0 0.07 86.3 28.2 
Burned areas without SL in ecotone forest 8.1 0.30 370.4 0 0 0 0.26 321.0 0.06 69.8 21.6 
Total in ecotone forest 9.3 0.30 323.3 0 0 0 0.30 319.8 0.13 70.1 22.1 

            
Burned areas with SL in all forest types 180.6 7.34 406.2 8.2 0.60 33.3 6.73 372.9 1.64 90.8 24.3 
Burned areas without SL in all forest types 501.3 19.77 394.4 0 0 0 19.47 388.4 4.21 84.0 21.6 
Total in all forest types 681.9 27.10 397.5 2.2 0.60 33.3 26.20 384.3 5.85 85.8 22.3 
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Table 7. Effect of logging on area and biomass burned    
    

      
    

 A B C D E F G H I 
Forest type Total  area 

burned 
(km2) 

Area 
burned  
w/SL 
(km2) 

Area burned 
that would have  
remained 
unburned 
w/oSL (km2) 

Average 
post-
logging 
biomass 
in area 
w/SL (Mg 
ha-1) 

Fraction 
killed by 
fire W/SL 

Average 
biomass 
killed by 
fire in 
burned 
area that 
would 
have 
remained 
unburned 
w/o SL 
(Mg ha-1) 

Total 
biomass 
killed by 
fire in 
burned 
area that 
would 
have 
remained 
unburned  
(106 Mg)  

Fraction 
killed by 
fire  
Wo/SL 

Area  that  
Would 
have 
burned if 
there had 
been no 
SL in 
areas that 
had SL 
(km2) 

 

   
Source Table 6 Table 6 B - I Table 4 Table 5 D × E C × 100  

× F/106 
Table 6 B - C  

          
Ombrophilous  532.7 152.3  399.6 0.232 92.6  0.216  
Campinarana 140.0 28.3  230.3 0.232 53.4  0.218  
Ecotone 9.3 0  ‘-- ‘-- ‘--   0.194  
All types 681.9 180.6 138.4 384.2 0.232 89.1 1.22 0.216 43.4 
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 J K L M N O P Q R 

 Additional 
fraction 
burned 
W/SL as  
compared 
to Wo/SL 

Average 
additional 
biomass 
killed by 
fire in area 
W/SL that 
would have 
Burned 
w/o SL 
(Mg ha-1) 

Total additional 
biomass killed 
by fire in area 
W/SL that 
would have  
burned w/o SL 
(106 Mg) 

Total 
additional 
biomass 
killed by 
fire due to 
SL (106 
Mg) 

Fraction 
of 
original 
biomass 
removed 
or killed 
by SL 

Average 
biomass 
Wo/SL 
(Mg ha-1) 

Average 
biomass 
removed 
or killed 
by SL 
(Mg ha-1) 

Total 
biomass 
removed 
or killed 
by SL in 
study 
Area w/SL 
(106 Mg) 

Percent 
increase 
of impact 
of  SL 
due to 
additional 
area 
burned 
(%) 

 
 

 

 
 
 

 
Source E - H D × S ((B-D)×100-T) 

/106 
G + U Section  

 2.3.2 
Table 6 W × X T×100×Y 

/106 
V/Z×100 

          
Ombrophilous  0.016 6.4   0.082 435.0 35.7 0.54  
Campinarana 0.014 3.1   0.082 250.8 20.6 0.06  
Ecotone             --             --               --        360.3             --              0  
All types 0.016 6.0 0.03 1.25 0.082 395.0 32.3 1.69 74.1 
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 728 
 S T U V W X    
 Total area 

present 
(km2) 

Total area 
logged 
(km2) 

Total area not 
logged (km2) 

Total area 
burned 
w/SL  
(km2) 

Total area 
burned 
wo/SL 
(km2) 

Total area 
burned 
(km2) 

   
    
    

    
Source Table S-13 Section 

4.2.2 
S - T Table 6 Table 6 V + W    

   
          
Ombrophilous 5,720.8   152.3 380.3 532.7    
Campinarana 727.9   28.3 111.7 140.0    
Ecotone 63.7   0.0 9.3 9.3    
All types 6,512.4 520.5 5,991.9 180.6 501.3 681.9    
          
          

 Y Z AA AB AC AD    
 Percent 

burned of 
area logged 
(%) 

Percent 
burned of 
area not 
logged (%) 

Area that would 
have burned in 
logged area if 
unlogged (km2) 

Loss from 
fire due to 
logging 
effect on 
burned 
area as % 
of loss 
from 
logging 
(%) 

Total 
biomass 
loss from 
fire due to 
logging 
(106 Mg) 

Biomass 
loss from 
fire due to 
logging as 
% of loss 
from 
logging 
(%) 

   

    
    
 

 
   

    
Source V/T ×100 W/U ×100 Z/100×AJ G/Q×100 G + M AC/Q×100   
          
All types 34.7 8.4 43.5 72.5 2.47 146.5    
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 729 
 730 
4. Discussion 731 
4.1 Role of selective logging in increasing fire severity 732 

In our study, the use of severity classes based on NDVI offered excellent insights 733 
into the severity of SL practiced in the studied area. Our approach can be considered to 734 
be a methodological advance because it can be easily used in calculating GHG 735 
emissions to the atmosphere using land-use models, reducing uncertainties, for 736 
example at the scale of Landsat pixels. Although it is a simplification for calculations 737 
of biomass loss, the use of constant values in our study (Table 2) can be justified by 738 
the difficulty (logistics and trained professionals) of obtaining the true parameters for 739 
the forest affected by the fires. This explains, in part, why the Brazilian inventories of 740 
greenhouse-gas emissions do not yet consider emissions from forest degradation by 741 
understory forest fires and selective logging (e.g., Brazil, MCTI, 2020). 742 

The highest occurrences of burned areas and SL in the first distance intervals from 743 
the edge are characteristic of the intense fragmentation of the forest caused by human 744 
occupation in the study area. This fragmentation increases the contact between the 745 
sources of fire ignition (burning of forest biomass from deforestation and in the 746 
management of pastures and agricultural fields) and the edge of the forest (Alencar et 747 
al., 2006, 2015; Aragão and Shimabukuro, 2010). 748 

Estimates of the biomass in areas affected by logging must be adjusted for the 749 
amounts of biomass removed by the logging. Logging slash and additional trees killed 750 
in the logging operations will remain in the forest as dead biomass (necromass) and 751 
the carbon in these components will eventually be emitted to the atmosphere either 752 
through burning or decay. An idea of the harvest intensity of the selective logging in 753 
the area can be derived from the officially reported volumes processed by sawmills in 754 
the municipality: a total of 455,347 m3 over the 2007-2015 period (Brazil, IBGE, 755 
2021). Although the part of our study area in Rorainópolis (Table S1) represents only 756 
19.1% of the area of the municipality (33,579.7 km2), it represents virtually all of the 757 
accessible area of forest outside of protected areas. The concentration of logging 758 
pressure in a relatively small space in the municipality may have induced the loggers 759 
to exploit these forest resources at high intensity, exposing the forest to greater fire 760 
hazard.  On the other hand, the concentration of logging in a small area protected the 761 
currently inaccessible areas from increased fire risk.  762 

 763 
4.2 Logging intensities in SL  764 

Logging in the southern portion of the state is practiced in a manner similar to that 765 
practiced in other parts of the Brazilian Amazon (Nepstad et al., 1999). Like other 766 
areas in the Amazon, logging in our study area is characterized by exploitation of only 767 
a few commercial species, a low yield of sawn wood, deficiency in the application of 768 
forest management and widespread illegality in removal of wood from the forest (G1, 769 
2018b; Gimenez et al., 2015; Lentini et al., 2005; Monteiro et al., 2010; Pereira et al., 770 
2010).  771 

The estimate of logging intensity that is needed in order to calculate the biomass 772 
present in the logged areas at the time of the 2015-2016 fires requires deduction based 773 
on the volume of logs removed and the area we mapped as affected by SL (see 774 
Supplementary Material, Section 1.7). Officially, from 2010 to 2015, 350,147.0 m3 of 775 
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logs were harvested in the municipality of Rorainópolis (Brazil, IBGE, 2021). If we 776 
consider that all of this volume of wood was obtained exclusively from our study area, 777 
where the areas authorized for deforestation totaled 124.8 km2 in the period from 2010 778 
to 2015, the average volume removed would be 28.1 m3 ha-1. Although this value is 779 
44.8% higher than the value used in our calculations, in terms of volume (19.4 m3 ha-780 
1), to deduct biomass removed by SL (35.67 Mg ha-1; Supplementary material: Section 781 
1.8) in areas that were burned and had signs of SL, the generated volume reaches 782 
1,009,770 m3 in 520.5 km2 of SL polygons (19.4 × 520.5 × 100) mapped in our study 783 
area from 2010 to 2015 (Table S8). This value indicates that there may have been a 784 
logging 2.9 times (188.4%) greater than the value officially reported by the loggers 785 
(Brazil, IBGE, 2021).  786 

 787 
Authorized forest-management projects provide another basis for comparison. 788 

Although FEMARH did not provide data on authorized forest-management plans for 789 
our study area before 2016, if we assume that in the period from 2010 to 2015 the 790 
same area was authorized annually for management as occurred between 2016 and 791 
2019 (1566.6 ha year-1) (i.e., before the substantial increase in authorization in 2020), 792 
and we apply the average authorized harvest of 24 m3 ha-1, this implies an annual 793 
authorized harvest of 37,597.2 m3 (Table S4). The total volume from deforestation 794 
authorizations in the 2010-2015 period (611,674.9 m3; Table S3), plus the assumed 795 
forest-management authorizations (225,583.2 m3) total 837,758.1 m3, or 2.4 times the 796 
350,147 m3 officially reported as harvested in the municipality in the same period 797 
(Brazil, IBGE, 2021). This probably means that the officially reported volume is 798 
greatly understated. 799 

Considering the 520.5 km2 of SL area mapped between 2010 and 2015 (Table S8) 800 
and, using the same average harvest of 24 m3 ha-1, the total exploited volume would be 801 
1,249,200.0 m3, or ~3.6 times higher than that reported by Brazil, IBGE (2021) for the 802 
same time interval. Another important factor to be considered is that only 26.2% 803 
(3114.1 ha) of the area authorized for “alternative land use” between 2010 and 2015 804 
(12,480.9 ha) was effectively deforested by 2020. These facts hide a serious problem 805 
for the timber sector in southern Roraima and explains, in part, why many lumber 806 
companies were closed and stopped working after IBAMA inspection operations in 807 
Rorainópolis (G1, 2018a) and in the port of Manaus, Amazonas (G1, 2018b). In 808 
addition, it supports the supposition that permits for SL in areas released for 809 
“alternative land use” (deforestation) are used to launder wood. 810 

 811 
4.3 Wood laundering as a factor in selective logging and consequent fire 812 

While the 2015-2016 El Niño provided ideal climatic conditions for fires (Aragão 813 
et al., 2018; Burton et al., 2020; Fonseca et al., 2017; Ray et al., 2005), much of the 814 
“blame” for the fires and the damage they caused can be attributed to the roles of SL in 815 
increasing the probability of areas being burned and in increasing the damage when 816 
burning occurs. The large area of selective logging in our study area appears to be 817 
mainly the result of permits from authorized deforestation being used to provide cover 818 
for transporting the logs to sawmills (i.e., “laundering” wood) and a lesser amount 819 
from authorized forest-management projects. 820 

In our study area logging is done based on the approval of licenses for clearing 821 
forest for agriculture and pasture. In these projects FEMARH authorizes the sale of a 822 
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restricted volume of wood, which generally varies between 20 and 100 m3 per ha of 823 
authorized clearing (e.g., Barni et al., 2020). These authorizations are often used to 824 
“launder” wood from illegal logging in nearby forests, including wood from outside of 825 
the properties where the clearcutting was licensed (Condé et al., 2019). In these 826 
clearcutting projects, the wood is harvested before the forest is cleared, and one to two 827 
years or more elapse before the remaining trees are cut when the area is deforested for 828 
pasture (this is recurrent throughout the southern portion of the state). In this case, the 829 
forest contains large clearings resulting from the opening of roads and log-storage 830 
yards, with the remaining trees left standing until the end of the logging operation 831 
before being cut. The burning of areas that are deforested in clearcutting projects serve 832 
as sources of ignition for the spread of fire to the adjacent forest. Logging disturbance 833 
can be more serious than the deforestation itself as a force for spreading fire. Under 834 
extreme climatic conditions such as the 2015/2016 El Niño event (Burton et al., 2020; 835 
Fonseca et al., 2017), logged areas become highly vulnerable to fires (Andrade et al., 836 
2020; Cochrane et al., 1999; de Faria et al., 2017; Morton et al., 2011; Ziccardi et al., 837 
2019). The logged areas serve as “springboards” for fire to gain momentum and spread 838 
to adjacent areas, including those without evidence of SL.  839 

This effect of recent logging was shown by the correlation analysis between the 840 
incidence of fire and the difference between the NDVI values observed in SL areas 841 
carried out in years immediately before the fires and the NDVI values observed in the 842 
same places in 2016 (Figure S9). The increasing correlation between these values over 843 
time is consistent with the more recently logged areas having greater fire severity 844 
(Figure 5B). This corroborates the studies by Souza Jr. et al. (2005a, 2013), who 845 
analyzed forest degradation by SL and fire using multitemporal images. 846 
4.4 Vulnerability of the forest to understory fires 847 

The variables that contributed the most to the vulnerability of the forest were, in 848 
decreasing order, the distance from secondary roads, the distance from previous or 849 
cumulative deforestation and the distance from selective logging. The effects of major 850 
and secondary roads on the occurrence of deforestation and forest fires in the Amazon 851 
are well known (Barni et al., 2015b; Fonseca et al., 2017, 2019; Silvestrini et al., 2011; 852 
Soares-Filho et al., 2006). However, with regard to modeling the risk of forest fire 853 
using SL as an explanatory variable in the model, our results are unprecedented and 854 
demonstrate the importance of regulating this activity for combating and controlling 855 
forest fires in Brazilian Amazonia. 856 

Modeling the probability of the occurrence of fires in the study area using the 857 
weights-of-evidence method allowed us to produce a vulnerability map of the forest 858 
(map with all variables) with very high spatial resolution (compatible with the Landsat 859 
8 pixel size of 30 m). Providing information for use in risk maps for the occurrence of 860 
catastrophic events, such as floods, hurricanes and forest fires, is valuable for planning 861 
and for preventing and mitigating the potential impacts these calamities cause to the 862 
economic, social and environmental sectors. Increasing the accuracy of models can 863 
make them more effective as a basis for public policies to reduce these risks (Ferrier et 864 
al., 2016; Fonseca et al., 2017, 2019; Marcelino, 2008). The map of forest 865 
vulnerability to fire modeled in this study can serve as a tool for planning preventive 866 
measures for combating fires and for mitigating the effects of fire in Roraima (Barbosa 867 
et al., 2003). The increased vulnerability of selectively logged forest to fire implies 868 
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that the simple assumption that authorized forest management projects in Amazonia 869 
are sustainable is unwarranted. One cannot simply assume that if government 870 
regulations on the intensity of logging and other factors in management systems are 871 
followed then the system will automatically be sustainable. Unfortunately, fire was not 872 
considered in the forest-recovery studies underlying official regulations. Virtually all 873 
plans for forest management in Amazonia assume that the managed areas will never 874 
burn (see Fearnside, 2003). The falseness of this assumption is central to discussions 875 
of the appropriate role of forest management in Amazonian development. 876 

The roles of selective logging in facilitating forest fires and increasing their 877 
damage mean that SL can have harmful and unpredictable consequences for the 878 
structure of the forest (Rappaport et al., 2018). Fires also affect the forest’s health, 879 
with repercussions for the survival of arboreal individuals in the years following the 880 
fires (Andrade et al., 2020; Avila et al., 2018; Trumbore et al., 2015; Watson et al., 881 
2018; Ziccardi et al., 2019). The increase in fire severity provoked by logging implies 882 
direct impacts on greenhouse-gas emissions and global climate (Aragão et al., 2007, 883 
Assis et al., 2020, 2018; de Faria et al., 2017; Rappaport et al., 2018; Stark et al., 2020; 884 
Trumbore et al., 2015). Fires like these are known to initiate a positive-feedback 885 
process, where the fire leaves dead wood in the forest that serves as fuel for the next 886 
fire at the time of another extreme drought event, making this and subsequent fires 887 
more intense, and this can completely destroy an area of forest after three or four fires 888 
(Berenguer et al., 2014; Cochrane et al., 1999; Nepstad et al., 1999). The effect of fire 889 
in more than doubling the impact of the logging itself, increasing the impact by 890 
146.5%, affects the calculus for forest management. This level of impact is the result 891 
of a single fire, and this is only the beginning of the positive feedback process of 892 
degradation in a downward spiral of biomass stocks. The large impact of selective 893 
logging through the effect on fire should both serve as a warning to policy makers 894 
promoting forest management and add urgency to repressing the widespread illegal 895 
logging in Amazonia. 896 

 897 
5. Conclusions 898 

The methods developed here to estimate the effects of selective logging based on 899 
fire-severity classes and the modeling of fire spread based on weights-of-evidence can 900 
be used as a tool for creating public policies regarding logging and fire. The results 901 
these policies need to be more cautious in promoting forest management and more 902 
rigorous in controlling illegal logging, as well as increasing efforts to prevent fires. 903 

The selective logging practiced in the southern portion of Roraima contributed 904 
significantly to the increase in damage to forest biomass and consequent emission of 905 
carbon to the atmosphere, in addition to facilitating the spreading of forest fires and 906 
increasing their intensity. If a hectare of forest is burned, the fire intensity is 85.9% 907 
more likely to be in the “very strong” category if it had been previously logged. Fire 908 
increased the impact of logging on biomass reduction by 146.5% as compared to the 909 
impact of the logging itself, thus more than doubling the impact of logging with just 910 
one fire. These results cast doubt on the assumption that approved forest-management 911 
projects are sustainable on the long term. In addition, the connection of logging 912 
disturbance and resulting forest fires to authorized wood sales from areas licensed for 913 
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clearcutting indicates the need for Roraima’s environmental agency (FEMARH) to 914 
revise its policies on the use of wood from forest-clearing projects. 915 
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1. Methodological procedures 
1.1 Study area 

Most of the study area (6402.6 km2, or 96.2% of the study area) is in the municipality of 
Rorainópolis, followed by the municipality of São Luiz (164.2 km2, or 2.4%) and the 
municipality of Caracaraí (90.5 km2, or 1.4 %) (Table S1). 
 
Table S1. Deforestation, forest fire, and logging in the portion of each municipality located in the study 
area. 
Municipalities Area 

(km2) 
% of 
the 
study 
area 

Deforestation 
km2 

% 
 

Forest fire 
(km2) 

% of 
the 
burned 
area 

SL 
(km2) 

% of 
the 
logged 
area 

Caracaraí 90.5 1.4 7.1 0.6 37.9 5.6 9.4 1.5 

Rorainópolis 6,402.6 96.2 1,045.3 94.8 638.3 93.6 624.4 96.8 
São Luiz 164.2 2.4 49.7 4.5 6.0 0.9 10.9 1.7 
Total 6,657.3 100.0 1,102.1 100.0 682.2 100.0 644.8 100.0 

 
1.2 Forest inventory locations 

The locations and other information for plots sampled in the field are presented in Table S2. 
All plots measured 4 × 250 m (1000 m2).  
 
Table S2. Location (latitude and longitude), area (ha) and date of field data collection. SL=Selective 
Logging. Wo-SL = without selective logging. W-SL = with selective logging. 
Plot name  SL Latitude Longitude Area 

(ha) 
*AGB_stock 
(Mg ha-1) 

Fire Census date 
(mm/dd/yyyy) 

Plot 1 W-SL 0.930891 -60.451279 0.1 404.6 yes 03/11/2016 
Plot 2 W-SL 0.932695 -60.447959 0.1 221.5 yes 03/11/2016 
Plot 3 W-SL 0.929629 -60.442604 0.1 458.5 yes 03/16/2016 

Plot 4 W-SL 0.927556 -60.441827 0.1 322.0 yes 03/16/2016 

Plot 5 W-SL 0.934315 -60.449995 0.1 640.2 yes 03/16/2016 

Plot 6 W-SL 0.934234 -60.452384 0.1 834.0 yes 03/16/2016 

Plot 7 W-SL 0.909708 -60.452814 0.1 320.1 yes 03/23/2016 

Plot 8 W-SL 0.906816 -60.453078 0.1 567.2 yes 03/23/2016 

Plot 9 W-SL 0.912540 -60.452564 0.1 1095.4 yes 03/23/2016 

Plot 10 W-SL 0.913743 -60.454606 0.1 427.1 yes 03/23/2016 

Plot 11 W-SL 0.711231 -60.565005 0.1 863.9 yes 03/30/2016 

Plot 12 Wo-SL 0.707785 -60.510418 0.1 289.6 yes 03/30/2016 

Plot 13 Wo-SL 0.709255 -60.508096 0.1 504.0 yes 03/30/2016 

Plot 14 W-SL 0.709511 -60.567284 0.1 1044.2 yes 03/30/2016 

Plot 15 W-SL 0.712057 -60.587902 0.1 387.6 yes 03/30/2016 

Plot 16 W-SL 0.712389 -60.591582 0.1 424.0 yes 03/30/2016 
Plot 17 Wo-SL 0.989933 -60.425055 0.1 546.6 yes 04/06/2016 
Mean  - - - - 550.0 - - 

*Aboveground dry biomass stock based on Higuchi et al. (1998) with adjustment for 40% water content (Higuchi et 
al., 1998) and for biomass of palms (Saldarriaga et al., 1988). 
 
1.3 Biomass calculation in inventory plots for deriving fractions of biomass killed 

Unlike the biomass map for Roraima, which used the Barni et al. (2016) analysis with 
species specific data, only about half of the trees in the plots had known identities, and we 
therefore used the Higuchi et al. (1998) equation to calculate fresh biomass directly from DBH 
without using species-specific wood-density data. Because the plot data are only used for 
deriving the fractions of biomass killed by the fire in the different severity classes, not the forest 
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biomass to which these fractions will be applied, the use of different biomass estimation 
equations will not affect the results for the impact of fire in the study area, since the both the 
numerator and the dominator in the fractions of biomass killed have been calculated with the 
same method. 

Fresh weight was converted to dry weight by multiplying by 0.60, which was the dry weight 
to fresh weight ratio derived by Higuchi et al. (1998: Table 3b). This rate was applied to the 
fresh-biomass value calculated by the Higuchi et al. (1998) equation for each tree in the 
database. This procedure was performed from the excel spreadsheet. Thus: 
 

Ln(Fresh weight) = -1.497+2.548 × Ln(DBH) 
Dry weight = EXP(Ln (Fresh weight)) × 0.6 

 
The total weight (kg-1) of each plot (sum of the dry weight of all trees in the plot) was 

multiplied by 10 (to transform from kg-1 per plot to kg ha-1) and, in sequence, the total weight in 
kg ha-1 was divided by 1000 to transform into Mg ha-1. 

 
1.4 Area (ha) and volume (m3) authorized in “alternative land-use” projects 

The largest area authorized for deforestation (3300.7 ha, or 26.4% of the total area 
authorized) was in 2015 and the smallest (290.6 ha, or 2.3%) was in 2011. Only 26.2% (3114.1 
ha) of these areas authorized for alternative land use were effectively deforested by 2019 (Table 
S3). 

 
Table S3. Area and volume of wood authorized for harvest in alternative land-use projects in the study 
area. 

Year n Authorized 
area (ha) 

Authorized 
volume (m3) 

Average 
volume 

(m3 ha-1) 

*Deforestation 
(ha) % **YARSL 

(n) 

2010 9 2,095.4 133,939.0 63.7 525.9 25.1 2.8 
2011 2 290.6 13,027.8 49.5 102.4 35.2 4 
2012 17 3,244.9 150,319.5 50.6 755.5 23.3 2 
2013 4 873.2 46,156.7 53.3 195.0 22.3 1 
2014 12 2,676.1 114,311.9 43.0 695.8 26.0 1 
2015 14 3,300.7 153,920.6 48.4 839.7 25.4 4 
Total 58 12,480.9 611,675.5 51.4 3114.1 26.2 2.5 

* Deforestation by 2019.  
** Years after the release to SL. 
 
1.5 “Sustainable Forest Management” Plans 

The areas released for selective logging in “sustainable forest management” plans in 
Rorainópolis totaled 11,958.8 ha from 2016 to 2020 with an average authorized harvest of 23.9 
m3 ha-1. In this area, a total volume of 281,091.3 m3 of wood in logs was released (Table S4). 
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Table S4. Location (latitude and longitude), area (ha) and volume (m3) authorized for logging in 
“sustainable forest management” plans in the municipality of Rorainópolis. 
ID Latitude Longitude Authorized area 

(ha) 
Authorized 
volume (m3) 

Average 
volume 
(m3 ha-1) 

Year 

1 0.4351889 -60.4069556 552.6 13,079.7 23.7 2019/20 
2 0.3815278 -60.6354444 957.9 14,712.8 15.4 2017/18 
3 0.5415483 -60.4245542 1,442.9 35,830.9 24.8 2019/20 
4 0.7514861 -60.6653361 1,254.1 19,664.6 15.7 2018/19 
5 0.5598333 -60.3416111 1,071.0 22,125.1 20.7 2018/19 
6 0.7100000 -60.0663889 987.9 26,066.4 26.4 2016/17 
7 0.5574109 -60.6592349 964.3 24,456.3 25.4 2020/21 
8 0.2734927 -60.4002495 1,163.9 33,588.1 28.9 2020/21 
9 0.5218820 -60.6587190 947.7 22,580.0 23.8 2020/21 

10 0.9931272 -60.5705950 192.6 5.570.0 28.9 2020/21 
11 0.2588300 -60.4437717 1,089.9 31,847.2 29.2 2020/21 
12 0.4905078 -60.3520806 666.4 17,003.1 25.5 2020/21 
13 0.4905078 -60.3520806 667.8 14,567.1 21.8 2020/21 

    Total 11,958.8 281,091.3 23.9   
 
1.6 Fire severity estimation by NDVI and NBR 

The results of the comparison between NDVI and NBR using fire-severity classes (light, 
moderate, strong and very strong) are presented in Table S5. Figure S1 shows the results of the 
comparative analysis between the NDVI and the NBR in the assessment of burned areas. Figure 
S2 shows a portion of the study area with fire-severity classifications by each index. 

The larger area that the NBR index detected in the lowest severity class (light), as compared 
to NDVI, is an indication in favor of NDVI as a more accurate index for our purposes. The fires 
in the area occurred from 1 December 2015 to 23 March 2016, with most of the 216 “hot pixels” 
detected by the Aqua satellite being detected between 15 January and 5 February 2016. This 
means that the bulk of the burning was almost five months before the satellite pass on 9 June 
2016, and, with the rainy season beginning at the end of March, there were over two months of 
rain before the satellite pass. Therefore there had been time for regeneration of green vegetation 
in the understory of the burned areas. The burn-severity classification by the sensors would be 
most likely to downgrade the assignment of values in lower severity classes, such as classifying 
a “moderate” burn as “light,” because the more-severe burns would inhibit regeneration. The 
close agreement between the two indices (9,6% NDVI and 8.6% NBR) in their findings for the 
highest severity class (very strong) can be explained by the almost total inhibition of 
regeneration in these places when fire is very intense. In this case, the intensity of the fire may 
have partially or totally eliminated the seed bank from the soil, thereby making more time 
necessary for regeneration (Figure S2).  

NDVI and NBR use different bands, which may have made the green regeneration lead NBR 
to downgrade the assigned severities more than did NDVI. NDVI uses Landsat 8 sensor bands 5 
(near infrared [NIR] wavelength range: 0.851 - 0.879 micrometers) and 4 (red: 0.636 - 0.673 
micrometers). NBR uses bands 7 (short-wave infrared 2 [SWIR2]: 2.107 – 2.294 micrometers) 
and 5 (NIR: 0.851 - 0.879 micrometers). In the case of NBR, there is an increase in the contrast 
between the values of photosynthetically active vegetation and photosynthetically inactive 
vegetation (dead biomass). Higher reflectance levels associated with photosynthetically active 
vegetation, and part of this increase in “greenness” detected by NBR, can be attributed to forest 
regeneration by sprouting, seedling emergence from the soil seed bank and appearance of 
herbaceous plants in abundance.  
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Both indices capture the “greenness” effect, but this reflection is not very evident in the case 
of NDVI because this composition uses band 4 (red). When using band 7 to compose the NBR 
there is a greater expansion of the values due to the greater contrast (greater difference) between 
the reflection values of bands 5 and 7 than between the reflection values of bands 5 and 4 used to 
compose the NDVI. For example, in our study the range of the NBR index values was 0.5010 
(0.7205 minus 0.2104: Table S5) while the range of the NDVI was 0.3784 (0.6031 minus 
0.2247: Table 1 in the main text). This difference meant a 32.4% increase in the amplitude of the 
NBR values in relation to the amplitude of the NDVI values. 

This explanation is speculative due to the lack of information linking ground-level 
regeneration with the NBR index. Our empirical experience suggests rapid regeneration in 
lower-severity burns. This subject should be the object of future studies in the region due to the 
importance of improving forest degradation estimates. 

 
Table S5. Comparison analysis between NDVI and NBR using fire-severity classes. 
 NDVI NBR NDVI-

NBR 
 NBR values 

Class Area 
(km2) % Area 

(km2) % Area 
(km2) 

 
% 

Dimensionless 
(- 1 to +1) 

Light 245.8 36.2 282.9 41.7 -37.1 -15.1 0.5764 to 0.7205 
Moderate 227.5 33.5 206.9 30.5 20.6 9.1 0.4904 to 0.5764 
Strong 140.2 20.7 130.2 19.2 10.0 7.1 0.3944 to 0.4904 
Very strong 64.8 9.6 58.3 8.6 6.5 10.0 0.2104 to 0.3944 

Total 678.3 100.0 678.3 100.0 0.0 - - 

 
 
 

 
Figure S1. Comparison between sample values (n = 2502) for NBR and NDVI in burned areas in the 
study area. 
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Figure S2. Fire severity classification using NDVI (A and B) and NBR (C and D) in a portion of the 
study area. 
 
1.7 Wood density 

The values calculated for the basic density of wood (g cm-3) harvested in the SL areas are 
shown in Table S6. The table also provides the sources of the information.  
 
Table S6. Calculation of weighted mean wood density. 

Species Local name 
Wood 
volume (1) 

Basic 
density Note Weighted Density 

 
  

      m³  %   (g cm-3) 
 

 Source 
 Manilkara huberi Maçaranduba 9,806 29.2 0.878 (2) 0.257 Silveira et al., 2013 

Dinizia excelsa  Angelim-ferro 9,235 27.5 0.86 
 

0.237 Fearnside, 1997 
Hymenolobium 
excelsum 

Angelim-
pedra  4,440 13.2 0.64 

 
0.085 Fearnside, 1997 

Goupia glabra  Cupiúba 3,880 11.6 0.712 (2,3) 0.082 Nogueira et al., 2005 
Erisma fuscum  Caferana 2,170 6.5 0.49 (4) 0.032 Fearnside, 1997 

Qualea paraensis 
Rabo-de-
arraia  1,350 4.0 0.67 

 
0.027 Fearnside, 1997 

Protium sp. Casca-grossa  1,000 3.0 0.589 (2,3,5) 0.018 Nogueira et al., 2005 
Clarisia racemosa Guaruba 1,000 3.0 0.665 (2) 0.020 Silveira et al., 2013 
Couratari stellata  Tauari 320 1.0 0.63 

 
0.006 Fearnside, 1997 

Bagassa guianensis   Tatajuba 280 0.8 0.69 
 

0.006 Fearnside, 1997 
Handroanthus sp. Ipê  77 0.2 0.91 

 
0.002 Fearnside, 1997 

(1) Wood volumes are from a 2013 survey of 9 sawmills in Rorainópolis by Crivelli et al., 2017).   
(2) Includes variation along the trunk. 
(3) Includes radial variation (density of cross-sectional discs, including bark) 
(4) Density of a congeneric. 
(5) Mean of 14 trees from 7 species. 
 
1.8 Estimation of harvesting intensity and loss of live biomass from cumulative selective 
logging by 2015 
 

Only an approximate value can be estimated for the loss of live biomass to selective logging 
at the time of the 2015-2016 fires. Official data on log volumes processed in sawmills and 
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authorized for sale have wide discrepancies, and data are only available for certain years for 
different measures (Table S7). The data for log volume processed in sawmills, which 
information is available for the most years (2007-2019) is particularly unreliable. From 2007 to 
2014 the volume officially reported (Brazil, IBGE, 2021) averaged 34,525 m3 year-1, jumping by 
5.3 fold in 2015 to a new level, presumably due to an improvement in the veracity of reporting 
beginning in 2015. The new level presumed to originate in the municipality of Rorainópolis 
(90%, see text) is close (4.5% below) to the amount authorized for sale from clearcutting projects 
in 2015, the only year with data on the clearcutting projects after this shift (data on clearcutting 
projects are available for 2010-2015). The volume data for clearcutting authorizations therefore 
appears to be a good representation of the portion (estimated at 90%) of volume processed by 
sawmills in Rorainópolis that originates within the municipality and therefore in the 520.5-km2 

area where we mapped selective logging. During the 6 years with data for authorizations of 
clearcutting projects (2010-2015) the mean amount authorized was 101,945.8 m3 year-1. From 
this 1.2% must be deducted for the logs that were sold from the areas that were authorized for 
clearcutting that were, in fact, actually clearcut (see text), meaning that the volume harvested 
through selective logging was 100.742.5 m3 year-1. If one considers that this annual harvest also 
applies to the preceding 4 years (2006-2009), when substantial logging activity is known to have 
taken place, then the harvest intensity considering the 10-year 2006-2015 period was 19.4 m3 ha-

1. Considering the mean basic density the wood of 0.770 (See text Section 2.3.2), this removal in 
logs represents 14.9 Mg ha-1. To obtain the reduction in live biomass from the selective logging 
we must also include the stumps and crowns of the harvested trees, as well as the biomass of 
unharvested trees killed from damage in the logging operations. Nogueira et al. (2008) found that 
stumps represented 1% of the biomass of the commercial boles in 264 harvested trees in Brazil’s 
“arc of deforestation” in the southern part of Brazilian Amazonia. Applying this percentage, the 
stumps represent 0.15 Mg ha-1, and the trunk from the ground to the first significant branch for 
the harvested trees represents 15.05 Mg ha-1. Crowns were found to represent an average of 
30.8% of the aboveground biomass in 121 trees in dense forest near Manaus (da Silva, 2007, p. 
57). The crowns of the harvested trees therefore represent 6.7 Mg ha-1, and the total (commercial 
log + stump + crown) represents 21.75 Mg ha-1. Since this illegal selective logging does not 
employ reduced-impact techniques, damage equal to 64% of the harvested biomass is 
considered, based on studies reviewed in Fearnside (1995, p. 321). This increases the 
aboveground biomass loss to 35.67 Mg ha-1. 
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Table S7. Comparison of official data sources on log volumes in Rorainópolis 

Year Volume  Processed Volume Volume 
Discrepancy between processed 
volume assumed to come from 

 
processed log volume authorized in  authorized Rorainópolis and volume authorized 

 
in sawmills assumed to deforestation in forest- in deforestation projects  

 
(m3) come from projects management    (m3)       (%) 

 
 

(a) Rorainópolis (m3) projects 
   

  
(m3) (c) (m3) 

   
  

(b) 
 

(d) 
   2007 40,000 36,000 

     2008 32,700 29,430 
     2009 32,500 29,250 
     2010 33,000 29,700 133,939.0 

 
104,239.0 351.0 

 2011 32,600 29,340 13,027.8 
 

-16,312.2 -55.6 
 2012 35,000 31,500 150,319.5 

 
118,819.5 377.2 

 2013 36,400 32,760 46,156.7 
 

13,396.7 40.9 
 2014 34,000 30,600 114,311.3 

 
83,711.3 273.6 

 2015 179,147 161,232 153,920.6 
 

-7,311.7 -4.5 
 2016 193,210 173,889 

 
20,066.4 

   2017 424,601 382,141 
 

14,712.8 
   2018 155,942 140,348 

 
41,789.7 

   2019 170,000 153,000 
 

13,079.7 
   2020 

   
149,611.8 

   2010-2015 315,132.3 611,674.9 
 

296,542.6 94.1 
 2010-2014 153,900 457,754.0 

 
303,854.3 197.4 

 (a) Brazil, IBGE (2021). 
(b) Assumed 90% originates from the municipality of Rorainópolis and 10% from the neighboring municipality of 
Caracaraí and São Luiz. Volume from indigenous areas is assumed not to be reported. 
(c) Table S3. 
(d) Table S4. 
 
1.9 Selective logging 
1.9.1 Mapping of the selective logging 

For mapping selective logging, 16 images were used: 10 images from Landsat 5 TM and six 
from Landsat 8 OLI / TIRS (Table S8). The classification was checked by field observations in 
burned and unburned areas in 21 inventoried plots after the fires occurred (Barni et al., 2017), of 
which 17 were used in the present study. We also used a vector file (shapefile) provided by 
FEMARH for areas licensed for deforestation (128.3 km2) in our study area during the same 
period of analysis (2007 to 2015) as a way to resolve doubts about spectral patterns in the images 
caused by SL. After mapping SL for this interval, the vector files were gathered in a single 
vector layer, converting this to an SL map (Figure S3).  
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Table S8. Mapping of selective logging (SL) from 2007 to 2015 in the study area. 

*Year Image date **Satellite 
data 

SL 
(km2) % 

***Deforestation 
(km2) 

 
% 

2007 21 Sept.  Landsat 5 39.7 6.2 19.4 11.3 
2008 10 Nov.  Landsat 5 37.6 5.8 26.3 15.3 
2009 29 Nov. Landsat 5 46.9 7.3 18.2 10.6 
2010 15 Oct. Landsat 5 75.9 11.8 16.1 9.3 
2011 31 Aug. Landsat 5 80.4 12.5 11.2 6.5 
2012 _ _ _ _ 15.5 9.0 
2013 23 Oct. Landsat 8 72.4 11.2 22.8 13.2 
2014 29 Dec. Landsat 8 93.1 14.4 19.5 11.3 
2015 30 Nov. Landsat 8 198.7 30.8 23.3 13.5 

TOTAL 16 _ 644.8 100.0 172.3 100.0 

* No images were observed for the year 2012 in our study area. 
** RGB and NDVI images. 
*** Deforestation in the municipality of Rorainópolis (Brazil, INPE, 2020). 
 
 

 
Figure S3. (A) Selective-logging map from 2007 to 2015 with the location of the 17 transects from the 
forest inventory and SL projects authorized by FEMARH in the study area, and in (B) and (C) detection 
of the SL areas in the RGB and NDVI images (Scale: 1: 50,000). 
 
1.9.2 Severity of fire according to the year of selective logging 

Analysis of the fire severity classes in areas impacted by SL showed that the class with the 
greatest severity (“very strong”) increased with decreasing time elapsed between the harvesting 
of wood and the occurrence of the fire. For example, for areas logged in 2007 the difference 
between the “light” and “very strong” classes was 7.4%, while for areas logged in 2015 (the year 
the fire started in the region) this difference was ~ 3 times greater (21.9%) (Table S9). 
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Table S9. Severity of fire according to the year of selective logging 

  
Year 

Light Moderate Strong Very strong   
Area 
(km2) % Area 

(km2) % Area 
(km2) % Area 

(km2) % Total 

2007 5.5 10.8 6.1 10.4 4.5 10.0 3.0 11.6 19.1 
2008 3.3 6.4 3.0 5.2 1.9 4.2 0.8 2.9 8.9 
2009 7.1 13.9 7.6 13.0 4.8 10.5 2.1 8.1 21.5 
2010 6.0 11.8 5.0 8.7 2.7 6.0 0.9 3.6 14.7 
2011 3.7 7.2 4.0 6.9 2.9 6.4 1.4 5.3 11.9 
2013 4.7 9.3 7.4 12.7 6.8 15.1 3.9 14.8 22.8 
2014 4.6 9.1 6.8 11.7 6.5 14.4 3.9 15.1 21.9 
2015 16.0 31.5 18.3 31.4 15.1 33.5 10.0 38.4 59.5 
Total 51.0 100.0 58.2 100.0 45.2 100.0 26.1 100.0 180.5 

 
1.10 Calculation of weights-of-evidence 
1.10.1 A priori probabilities of fire events 

The weights-of-evidence originated from the Bayesian method of calculating conditional 
probabilities. Its application in modeling the dynamics of land-use and land-cover change 
assumes that it is possible to calculate the probability a posteriori of an event happening based 
on information obtained a priori from a set of conditions (evidence) that favored or determined 
the event in question. In our study, a set of conditions or “evidences” was transformed into maps 
of distance variables (maps of continuous variables) and maps of categorical variables (maps of 
classes) to represent influences on the occurrence of forest fires in the study area in 2015/2016 
(Figure S4). The calculations of the weights-of-evidence and of the probability map were carried 
out in a sub-model in the Dinamica-EGO software with a stacking of the maps (Soares-Filho et 
al., 2014) (Figures S5 and S6). 

 
Figure S4. Set of continuous variables (with distance ranges) and categorical variables (vegetation, slope 
and altitude). SL = selective logging. 
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Figure S5. Submodel of the Dinamica-EGO software for calculating the weights-of-evidence 
coefficients. Source: adapted of the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/). 
 

 
Figure S6. Submodel of the Dinamica-EGO software for calculating the map of transition probabilities 
and the simulated fire map. Source: adapted of the Dinamica-EGO guidebook 
(https://csr.ufmg.br/dinamica/). 

The influence of the weights-of-evidence can be positive or negative. The coefficients of the 
weights-of-evidence are positive when they favor or promote an increase in the probability of a 
class transition, and they are negative when they inhibit the class transition, decreasing its 
probability of occurrence. For example, the spatial probability map (derived from weights-of-
evidence) will indicate to the software which sets of pixels representing forest on a land-use map 
at time t1 have a greater chance or probability of changing to a burnt area at time t2. The variable 
“distance to secondary roads,” for example, will have its maximum positive (+) weight-of-
evidence in the first meters away from the fire, and at progressively greater distances this 
influence will decrease until it becomes negative (-), reaching its negative maximum at the most 
distant point. 

In the modeling the weights-of-evidence represent the amount of influence of each variable 
on the probability of transition of a cell representing a particular state (i: forest) to change to 
another state (j: fire (F)), depending, for example, on its location within a distance range. In this 
way, the cell that is located closest to where the phenomenon occurred has a higher chance or 
greater probability. This relationship can be represented by equations (1) to (9) below, derived 
from the Bayesian inference method: 
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Likewise, considering non-event F, as not F (𝐹�), we obtain (4): 
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Applying the ratio between Equations (6) and (7), we obtain (8): (6) 
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Where “{F}” and “O {F / A}” are proportions of a priori probability that the “F” (fire) event 

occurs, and the fire event occurs given a spatial pattern “A”, respectively. “W +” is, therefore, 
the weight-of-evidence of event F occurring given the spatial pattern “A”. Thus, the calculation 
of the a posteriori spatial transition probability “i → j” for a spatial data set "(B, C, D, ... N)" can 
be represented by (10): 
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Where, "B, C, D, ..., N" are values of the k spatial variables estimated at positions "x, y", 

being represented by their respective weights-of-evidence "W + N". For more details on the 
weights-evidence method, see Barni et al. (2015). 

 
1.10.2 Correlation between spatial variables in the calculation of weights-of-evidence 

Application of the weights-of-evidence method presupposes spatial independence between 
variables. In the case of pairs of variables with a correlation above 0.5, one of them must be 
removed from the set of maps that will be used in the modeling in order to guarantee compliance 
with the model's assumption of independence (Bonham-Carter, 1994). This independence is 
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measured or estimated by observing some parameters, mainly that of contingency, which, like 
Pearson's correlation analysis (Figueiredo-Filho and Silva Junior, 2009), indicates the amount of 
correlation that exists between two spatial variables (Table S10). 
Table S10. Correlated variables in the calculation of the weights of evidence. 
Variable 1 Variable 2 CHI Sq. CRAMMER CONTING ENTROPY INF_C*INCERT 

Deforestation Secondary roads 26324385.8 0.38 0.86 4.36 0.35 
Fire Deforestation 13591362.2 0.31 0.81 4.97 0.20 
SL Secondary roads 11137374.0 0.30 0.78 4.75 0.21 
BR-174 Village 12300562.7 0.29 0.78 4.74 0.24 
Fire SL 10654858.5 0.26 0.77 5.07 0.18 
Fire Secondary roads 10387346.3 0.29 0.77 5.04 0.18 
Deforestation SL 9312302.5 0.26 0.75 4.87 0.17 
BR-174 Secondary roads 7309303.3 0.22 0.68 4.88 0.14 
BR-174 Deforestation 7117818.5 0.21 0.67 4.88 0.14 
Fire Protected area 4585235.4 0.20 0.65 5.02 0.13 
Fire BR-174 5084155.0 0.20 0.65 5.22 0.09 
Protected area SL 4263722.4 0.19 0.64 4.83 0.13 
Protected area BR-174 4550167.7 0.19 0.63 4.80 0.13 
Secondary roads Village 4673617.7 0.19 0.61 5.07 0.11 
Deforestation Village 4629794.4 0.18 0.61 5.09 0.10 
BR-174 SL 3819157.9 0.17 0.59 5.06 0.07 
Protected area Altitude 3321756.0 0.23 0.59 4.28 0.12 
Fire Village 3152213.0 0.14 0.57 5.35 0.07 
SL Water 2948194.9 0.15 0.56 5.14 0.06 
Protected area Secondary roads 3536961.0 0.16 0.56 4.90 0.09 
Protected area Deforestation 3378198.9 0.15 0.55 4.93 0.09 
Protected area Village 2480305.7 0.14 0.53 5.06 0.07 
Protected area Water 2553570.6 0.14 0.52 4.96 0.08 
Water Altitude 2382190.2 0.19 0.52 4.64 0.07 
Altitude Vegetation 2335823.6 0.40 0.49 2.34 0.10 
Secondary roads Altitude 2291973.7 0.18 0.49 4.60 0.06 
SL Village 2019896.1 0.12 0.48 5.23 0.06 
Water SL year class 214633.3 0.21 0.48 4.20 0.06 
Village SL year class 211868.6 0.21 0.48 4.30 0.06 
Protected area SL year class 181646.8 0.20 0.47 4.06 0.08 
BR-174 Altitude 1947197.2 0.17 0.46 4.58 0.06 
Fire Water 1609818.9 0.10 0.45 5.42 0.04 
Deforestation Water 2167922.4 0.11 0.45 5.25 0.05 
Deforestation Altitude 1804270.1 0.16 0.44 4.61 0.05 
BR-174 SL year class 168417.7 0.18 0.44 4.18 0.05 
Fire Altitude 1596435.5 0.15 0.43 4.85 0.04 
SL Altitude 1589559.1 0.15 0.42 4.64 0.04 
BR-174 Water 1463864.6 0.10 0.40 5.25 0.03 
Fire SL year class 133323.5 0.16 0.40 4.38 0.05 
Village Altitude 1239948.2 0.13 0.39 4.74 0.04 
Water Secondary roads 1464261.7 0.10 0.38 5.29 0.04 
Deforestation SL year class 111350.3 0.15 0.37 4.21 0.04 
Water Village 1102794.6 0.07 0.36 5.38 0.03 
Water Vegetation 771589.5 0.25 0.33 3.11 0.04 



14 
 

BR-174 Vegetation 798968.3 0.24 0.32 2.98 0.04 

Slope Altitude 838470.5 0.11 0.32 4.11 0.03 

Protected area Vegetation 654567.6 0.23 0.31 2.79 0.03 

Secondary roads SL year class 68851.5 0.12 0.30 3.87 0.02 

SL year class Altitude 68036.6 0.12 0.29 3.69 0.03 

Secondary roads Vegetation 475077.7 0.18 0.25 3.01 0.02 

Village Vegetation 440054.3 0.18 0.25 3.13 0.02 

SL Vegetation 444832.3 0.18 0.24 3.05 0.02 

Deforestation Vegetation 327915.6 0.15 0.21 3.00 0.02 

Fire Vegetation 323501.9 0.15 0.21 3.26 0.01 

SL year class Vegetation 26428.0 0.14 0.19 2.18 0.02 

Protected area Slope 221586.4 0.06 0.18 4.52 0.01 

Water Slope 203287.6 0.06 0.17 4.76 0.01 

SL Slope 154153.7 0.05 0.14 4.74 0.00 

Secondary roads Slope 145011.5 0.05 0.14 4.69 0.00 

Deforestation Slope 128456.0 0.04 0.13 4.68 0.00 

BR-174 Slope 123456.6 0.04 0.13 4.66 0.00 

Fire Slope 91464.5 0.04 0.11 4.94 0.00 

Slope Vegetation 54819.5 0.06 0.09 2.46 0.00 

Village Slope 29033.2 0.02 0.06 4.80 0.00 

SL year class Slope 2855.3 0.02 0.06 3.98 0.00 

SL SL year class 0.0 0.00 0.00 1.93 0.00 
SL = Selective logging 

1.11 Model validation using an exponential decay function and fuzzy similarity 
The “Calc reciprocal similarity map” function in Dinamica-EGO calculates a two-way 

similarity from the first map (simulated scenario) to the second (initial scenario) and from the 
second to the third (final scenario) (Figure S7). It is advisable to always chose the smaller 
similarity value since random maps tend to produce artificially high fits when compared 
univocally, because they spread the changes over the entire map. This test employs an 
exponential decay function truncated outside of a window size of 11 × 11 cells. The test result is 
returned in a .csv table file (Figure S8). 

 
Figure S7. Fuzzy comparison method using a map of differences and an exponential decay function. The 
process applies a constant decay function in which all window weights are set to 1 (A). The window 
convolutes over the map, obtaining a fuzzy value for the central cell (B). X = null values in the map. 
Source: adapted from the Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/). 



15 
 

 

 
Figure S8. Submodel for similarity calculation in Dinamica-EGO software. Source: adapted from the 
Dinamica-EGO guidebook (https://csr.ufmg.br/dinamica/). 

2. Results 
2.1 Areas of occurrence 

The areas of occurrence of the main variables distributed in the study area are presented in 
Table S11. The original forest area was estimated at 6512.4 km2, representing 97.8% of the study 
area. 
Table S11. Original forest area (km2), protected areas, non-forest and deforestation occurring in the study 
area. 
 Class Area 

(km2) 
% Forest 

fire 
(km2) 

Forest 
fire % of 
forest 
area 

SL-fire 
(km2) 

SL-fire 
% of 
forest 
fire 
area 

SL 
(km2) 

SL-fire 
(%) of  
SL area 

Original 
vegetation Forest 6,512.4 97.8       

 Non-forest 144.9 2.2       
 

Total 6,657.3 100.0       
2016 
vegetation Forest 5,410.3 81.3 682.2 12.6 180.7 26.5 644.8    28.0 

 Deforestation 1,102.1 16.6 _ _ _ _ _ _ 
 Non-forest 144.9 2.2 _ _ _ _ _ _ 
 Total 6,657.3 100.0       
Protected 
areas 

Indigenous land 875.6 13.2 0.0 0.0 _ _ _ _ 

 Anauá National 
Forest 2.6 0.04 2.0 76.9 _ _ _ _ 
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2.2 Estimates of biomass by forest type  

Dense ombrophilous forest was the most affected by understory fires, totaling 532.7 km2 and 
the estimated affected dry biomass at the time of the fire totaling 26.2 × 106 Mg. Ecotone forest 
had the smallest area (9.3 km2) and the smallest amount (0.3 × 106 Mg) of affected biomass 
(Table S12). 
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Table S12. Estimated biomass before and after logging in the area affected by fire separated by forest type and by selective-
logging status. 
  

 
 Original biomass (prior to logging)   Affected biomass (biomass at time of fire) 

 

Forest 

Total 
area 

affected 
bv fire 
(km2) 

Total 
biomass in 

area 
affected 
bv fire 

(106 Mg) 

% of total 
biomass 
in area 

affected by 
fire 

Mean  
original 
biomass  
(Mg ha-

1) 

Area 
W/SL 
(km2) 

Biomass 
after 

logging 
(106 
Mg) 

Biomass 
removed 
or killed 

by SL         
(106 Mg) 

 
Affected 

biomass in 
area with 
SL (106 

Mg) 

Area 
Wo/SL 
(km2) 

Affected 
biomass 
in area 
Wo/SL 

(106 
Mg) 

 
Campinarana 140.0 3.6 13.2 255.6 28.3 0.71 0.1 0.7 111.7 2.9 

 
Ecotone 9.3 0.33 1.2 360.3 0.0 0.0 0.0 0.0 9.3 0.3 

 
Ombrophilous  532.7 23.2 85.6 435.3 152.3 6.63 0.5 6.1 380.3 16.6 

 
Total 681.9 27.1 100 397.4 180.62 7.34 0.6 6.7 501.3 19.8 
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The estimation of forest biomass was performed for each forest type separately for areas 

with and without selective logging (SL). The dense ombrophilous forest (Ds) had the largest 
extension in terms of occupied area (87.8%) and in terms of biomass (92.5%) in relation to the 
total biomass (277.37 × 106 Mg) estimated for the original forest areas. The biomass of the areas 
under SL (27.6× 106 Mg) represented 9.9% of the total biomass found in the study area, and 
95.3% of that biomass was under dense ombrophilous forest (Table S13). 
Table S13. Estimated biomass (Mg) in the study area separated by areas affected by selective logging 
(SL) (W-SL) and areas not affected by SL (Wo-SL). 

Type Area 
(km2) % Biomass (106 

Mg) 
Mean  

(Mg ha-1) 
Wo/SL  
106 Mg) % W/SL  

(106 Mg) % 

Campinarana 727.9 11.2 18.7 256.3 17.4 93.0 1.30 7.0 

Ecotone 63.7 1.0 2.1 335.5 2.1 99.1 0.02 0.9 

Ombrophilous 5,720.8 87.8 256.7 448.5 230.3 89.7 26.3 10.3 

Total 6,512.4 100.0 277.4 425.9 249.8 90.0 27.6 9.9 

Wo/SL = without selective logging. W-SL = with selective logging. 

The cumulative loss of original biomass by deforestation up to 2016 was estimated at 48.04 
× 106 Mg, representing more than twice (2.1 times) the biomass affected by SL in our study area. 
The area deforested in dense ombrophilous forest (1059.3 km2) represented 96.1% of the total 
area deforested by 2016 and 97.5% of the total biomass lost (Table S14). 
Table S14. Biomass lost due to cumulative deforestation up to 2016. 

Deforestation Area 
(km2) 

% Biomass (106 
Mg) % Mean  (Mg 

ha-1) 
Campinarana 33.8 3.1 0.9 1.8 255.6 
Ecotone 8.8 0.8 0.3 0.7 367.4 
Ombrophilous 1,059.3 96.1 46.9 97.5 442.3 
Total 1,101.9 100.0 48.0 100.0 436.0 
 
 

2.3 Vulnerability of the forest to understory fires in SL areas 
SL influenced the spread of fire in the study area during the 2015/2016 El Niño event within 

the fire-severity classes. Based on NDVI image analyses, the graphs in Figure S9 show positive 
correlations between fires and the logging practiced in years immediately prior to the fires.  



19 
 

 
Figure S9. Comparison between NDVI values in SL areas in years prior to the fires with the NDVI 
values in the fire image for 2016. (A) Comparison of NDVI values between the years 2010 and 2016. (B) 
Comparison of NDVI values between the years 2013 and 2016. (C) Comparison of NDVI values between 
the years 2014 and 2016 and (D) comparison of NDVI values between the years 2015 and 2016. The 
lower-case letters above the boxes indicate statistical results between the NDVI values in years prior to 
the fires considering the fire-severity classes of the fires, while upper-case letters indicate the statistical 
results for the NDVI values in the 2016 image at the fire-event locations, also considering the severity 
classes. 

2.4 Fire and SL behavior as a function of forest-edge distance 
The highest occurrence of forest fires (114.9 km2: 20.1%) in the study area was found in the range 

between 0 to 120 m from the forest edge. The SL presented a similar result reaching 113.9 km2 (24.3%) 
in the first interval. The burned areas affected by SL were calculated at 161.2 km2 in the range between 0 
and 1200 m, representing 89.4% of the total reached in the study area (Table S15). 

Table S15. Fire and SL occurrence depending on the distance from the forest edge. 
Range (m) Fire 

(km2) 
% SL 

(km2) 
% SL x Fire 

(km2) 
% SL / Fire 

(%) 
SL x Fire 
/ Fire (%) 

SL x Fire 
/ SL (%) 

0 -- 120 114.9 20.1 113.9 24.3 23.7 14.7 99.1 20.6 20.8 
120 -- 240 95.3 16.7 58.2 12.4 25.3 15.7 61.1 26.5 43.4 
240 -- 360 77.8 13.6 55.2 11.8 23.5 14.6 70.9 30.2 42.5 
360 -- 480 68.8 12.0 52.8 11.3 21.2 13.2 76.7 30.9 40.2 
480 -- 600 55.6 9.7 47.5 10.1 17.9 11.1 85.3 32.2 37.7 
600 -- 720 43.6 7.6 38.1 8.1 14.1 8.7 87.2 32.3 37.0 
720 -- 840 37.8 6.6 32.5 6.9 11.8 7.3 85.9 31.2 36.3 
840 -- 960 31.7 5.6 28.4 6.1 9.9 6.1 89.5 31.0 34.7 
960 -- 1080 25.3 4.4 23.0 4.9 7.7 4.7 91.2 30.3 33.2 
1080 -- 1200 21.0 3.7 19.3 4.1 6.3 3.9 92.2 30.1 32.7 
Total 571.7 100.0 468.8 100.0 161.2 100.0       
Percent 682.2 83.8 644.8 72.7 180.4 89.4       

2.5 Model-validation results 

The results of the validation test are shown in Figure S10. The model containing all variables 
showed the greatest similarity between the observed and simulated scenarios. 



20 
 

  
Figure S10. Similarity test between the modeled maps and the fire map for 2016. 

2.6 Forest vulnerability to fire 
The assessment of the vulnerability maps showed that the SL influenced the spread of fire in 

the study area during the 2015/2016 El Niño event. The exposure of forest areas to fires 
increased by 366.2% in the most-vulnerable range, which ranged from 79.11 to 99.99% (0.7911 
to 0.9999 probability), with the presence of SL areas in the model compared to the absence of SL 
in the model (Table S16; Figures S11 and S12). 
 
Table S16. Classes of vulnerability of the forest to forest fires. 

  
Whole area 
regardless of 
impacts 

Without SL Without secondary 
roads Without deforestation 

Range Area (km2) % Area (km2) % Area (km2) % Area (km2) % 
0.0004 - 0.1488 2,550.4 47.1 1,750.1 32.3 2,467.7 45.6 2,478.5 45.8 
0.1489 - 0.3955 421.4 7.8 822.4 15.2 511.3 9.4 501.1 9.3 
0.3956 - 0.6109 407.5 7.5 938.9 17.3 500.3 9.2 478.1 8.8 
0.6110 - 0.7910 547.7 10.1 1,315.5 24.3 588.7 10.9 609.0 11.2 
0.7911 - 0.9999 1,487.9 27.5 587.9 10.9 1,346.7 24.9 1,348.1 24.9 

Total 5,414.8 100.0 5,414.8 100.0 5,414.8 100.0 5,414.8 100.0 

 
Without SL, roads 
or deforestation    With SL         With secondary 

roads With deforestation                   

Range Area (km2)         % Area (km2)         %  Area (km2)         % Area (km2)            %     
0.0004 - 0.1488 1,576.3 29.1 1,859.3 34.3 1,557.9 28.8 1,497.2 27.7 
0.1488 - 0.3955 784.3 14.5 821.7 15.2 966.9 17.9 985.9 18.2 
0.3956 - 0.6109 694.7 12.8 671.2 12.4 707.8 13.1 802.0 14.8 
0.6110 - 0.7910 2,045.3 37.8 912.2 16.8 735.8 13.6 951.1 17.6 
0.7911 - 0.9999 314.2 5.8 1,150.4 21.2 1,446.4 26.7 1,178.6 21.8 

Total 5,414.8 100.0 5,414.8 100.0 5,414.8 99.9 5,414.8 100.0 
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Figure S11. Area vulnerable to understory forest fires in the study area.  

 
Figure S12. Maps of the vulnerability of the forest to understory fires. (A) forest-vulnerability map 
calculated from variables not correlated with “secondary roads,” plus the “secondary roads” variable and 
(B) forest-vulnerability map calculated from variables not correlated with “deforestation,” plus the 
“deforestation” variable. The legend below the figure shows the ranges of probability ([0.1]) of the forest 
being affected by fire. 
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Figure S-13.  Biomass loss (Mg ha-1) by fire-severity class in areas with SL (W/SL) and areas without 
SL (Wo/SL) considering all forest types in the study area. The lower-case letters above the boxes indicate 
that there was no significant difference (p < 0.05) between the loss of biomass by fire in previously 
logged areas and unlogged areas within each severity class. 
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