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Abstract. Frog population declines have already been observed in the central Amazon 21 

even for common species that are considered not to be in danger of extinction. The 22 

Amazon is close to its limit of tolerated deforestation, and parts of the forest have 23 

already been modified by climate change, which raises questions about how the fauna in 24 

these areas would adapt to climate changes by the middle and the end of this century. In 25 

this study we used population density data on seven species of Amazonian frogs and 26 

analyzed the relationship between the activity of these species and temperature, 27 

precipitation, and relative humidity. We also used the least-squares method with 28 

logarithmic models to assess whether climate change projected by the 29 

Intergovernmental Panel on Climate Change (IPCC) would be an indicator of the 30 

population dynamics of these species. Our results suggest that even common species 31 

may be may experience population declines and extinction in the next decades due to 32 

climate changes. 33 
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INTRODUCTION 42 

 43 

In Amazonia, as in other parts of the world, the fate of amphibians serves as a 44 

harbinger of loss of biodiversity and much wider environmental destruction (Zipkin et 45 

al. 2020; Strona and Bradshaw 2022). Climate change has altered the geographical 46 

distributions of multiple anuran species around the world (e.g., Vieira et al. 2018; Hu et 47 

al. 2019). Climatic disturbance events have been responsible for the sudden population 48 

decline and extinction of several anuran species in Central America (Pounds and Crump 49 

1994; Pounds et al. 1999). Other factors acting in synergy with climatic events have 50 

caused local extinctions in the Atlantic Forest of Brazil (Heyer et al. 1988; Weygoldt 51 

1989; Eterovich et al. 2005; Ferrante et al. 2019). 52 

In the central Amazon some anuran species would be unable to migrate to 53 

climatically suitable locations, as in the case of the endemic central-Amazonian frog 54 

Atelopus manauensis (Jorge et al. 2020). This is especially so since Amazonian rivers 55 

are geographical barriers for various vertebrate groups, such as birds (Ribas et al. 2012; 56 

Ferreira et al. 2016; Braga et al. 2022) and also amphibians and squamates (Moraes et 57 

al. 2016). Barriers can also be imposed by land-use change, particularly the growing 58 

areas of deforestation that leave remaining areas of natural forest as islands surrounded 59 

by a landscape that is hostile to the forest’s endemic frogs (Ferrante et al. 2017, 2019), 60 

and even to some species with significant dispersal and colonization ability (Ferrante et 61 

al. 2020).  62 

Deforestation is expanding from Manaus into surrounding areas of the central 63 

Amazon (Ramos et al. 2018; Santos et al. 2022), and this transformation would be 64 

greatly accelerated by the planned reconstruction of Highway BR-319 connecting 65 

Manaus to Brazil’s “arc of deforestation” - the highly deforested strip of land along the 66 

southern and eastern edges of Brazil’s Amazon region (Ferrante et al. 2021a). Other 67 

processes creating barriers include forest degradation through fire and consequent 68 

expansion of savannas (Sales et al. 2020; Flores and Holmgren 2021). When climate 69 

change occurs in areas isolated by barriers, the species must either adapt to local 70 

environmental changes or become extinct (Quental and Marshall 2013; Ferrante et al. 71 

2023) unless they succeed in colonizing new ecologically suitable habitats. Climate 72 

change is considered to be one of the greatest threats to amphibians (Stuart et al. 2008; 73 

Bishop et al. 2012), which is the most threatened group among vertebrates (Baillie et al. 74 

2010; Bishop et al. 2012). Characteristics that make frogs vulnerable to climate change 75 

include the fact that their skin is permeable, and they have exposed eggs and embryos - 76 

most species have a free-swimming larval stage in the life cycle (Blaustein et al. 1994, 77 

2001; Blaustein and Kiesecker 2002; Blaustein and Bancroft 2007; Duellman and Trueb 78 

1996; Stebbins and Cohen 1995).  79 

Climate change has already affected different taxonomic groups in the central 80 

Amazon, especially in valley and stream areas, as shown by more than 20 years of 81 

monitoring (Costa et al. 2020). For some locations in Brazil, anthropogenic climate 82 

change in synergy with landscape change have been shown to threaten anuran 83 

populations and cause local extinctions (Ferrante et al. 2019) even more than invasive 84 

species or lethal pathogens (Ferrante et al. 2020). This means that anthropogenic climate 85 

change should be a priority for studies of threats to Brazilian amphibians (Verdade et al. 86 

2012). In addition, structural changes in the landscape (such as deforestation, forest 87 

fragmentation, edge effects and neighboring agricultural crops) can alter the 88 

microclimate of amphibian habitats, leading to subtle increases in temperature and 89 

losses of moisture that can affect population density, species richness and community 90 

composition (Urbina-Cardona 2006; Ferrante et al. 2017). 91 
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Amphibians are extremely vulnerable to climate change in the Amazon 92 

(Vasconcelos et al. 2018), and the distribution of anuran taxa is directly influenced by 93 

the rainy season and by proximity to humid environments, such as valleys and streams 94 

(Moraes et al. 2016), which are already altered by ongoing climate change (Costa et al. 95 

2020). The present study aims to show how Amazonian frog species are responding to 96 

climate change. We hypothesize that ongoing climate change could even threaten the 97 

populations of common species that are now abundant and have so far not been 98 

considered to be threatened. 99 

 100 

METHODS: 101 

 102 

Study Site 103 

 104 

The region denominated here as the “central Amazon” (Fig. 1) is bounded to the 105 

east by the border between the states of Amazonas and Pará (a NE-SW diagonal from 106 

approximately 57 to 60º W longitude), thus avoiding the “dry corridor” that crosses the 107 

Amazon River at Santarém, Pará. To the west, the central Amazon can be considered 108 

bounded at 66º W Longitude, thus avoiding the area with a dry season < 2 months in 109 

length in the NW corner of Brazilian Amazonia. To the north it is bounded by the 110 

equator, and to the south at approximately 6º S latitude, thus avoiding the Humaitá 111 

savanna and areas with a dry season > 3 months in length. This region encompasses a 112 

range of ecoregions (Olson et al. 2001; Fearnside 2023), with a predominance of dense 113 

ombrophilous forest and is in the morphoclimatic domain classified as “equatorial 114 

forested lowlands,” with average temperatures of 24 to 27°C (Ab'Sáber 2003). The 115 

central Amazon is vulnerable to climate change and is becoming increasingly 116 

susceptible to forest fires, especially in El Niño years (Reis et al. 2021). 117 

Data used in the present study were obtained in the Adolpho Ducke Forest 118 

Reserve, in the municipality of Manaus in the central Amazon. The Adolpho Ducke 119 

Forest Reserve is located in terra firme (upland) forest. Although these forests are not 120 

seasonally flooded by large rivers (Braga 1979), they have many permanent and 121 

temporary pools that are used by amphibians for reproduction (Menin et al. 2008; Najar 122 

and Ferrante 2018). The study area has an average annual temperature of 26 °C and 123 

annual rainfall ranging from 1750 to 2500 mm (Oliveira et al. 2008) - a sampling 124 

interval that encompasses the rainfall regimes of the different ecoregions included in the 125 

central Amazon (Ab’Sáber 2003). All of the landscape studied here has the same forest 126 

type (dense ombrophilous forest) and is the best-studied area in the central Amazon. 127 

The Adolpho Ducke Forest Reserve has a large sampling effort in terms of biodiversity 128 

and physical and climatic variables and, as a permanently protected area, the sampled 129 

sites are not susceptible to impacts other than anthropogenic climatic effects (Oliveira et 130 

al. 2008; Magnusson et al. 2013). 131 

 132 
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 133 
Figure 1. Map of ecoregions in the central Amazon and Adolpho Ducke Forest Reserve (ADFR). 134 
 135 
Sampling design 136 

 137 

Declines in anuran populations can be caused by the lengthening of the dry 138 

season and by reduced rainfall in the wet season; these changes lower the activity of 139 

individuals, and a substantial drop in a single season can affect the recruitment of new 140 

individuals in the population and decrease the population density in subsequent years 141 

(Ferrante et al. 2023). Population data for the seven species in the present study were 142 

collected in five samplings: November-December 2002; March-May 2003; November-143 

December 2003; February to May 2004 (Data from Menin et al. 2008). The sampling 144 

periods included both the dry season, from June to November, and the rainy season, 145 

from December to May (Ribeiro 1976), thereby allowing us to associate fluctuations in 146 

the active frog populations with climatic fluctuations in the central Amazon.  147 

This means that alterations in the dry and wet seasons caused by global climate 148 

change can shape anuran population dynamics in the long term, since there is not 149 

enough time for adaptation, as has already been observed for frogs in Brazil’s Atlantic 150 

Forest (Ferrante et al. 2023). In the present study we use data from monitoring anuran 151 

populations over a period that covers both the dry and wet seasons and that can capture 152 

population oscillations due to local climatic variations. Knowing the temporal dynamics 153 

of the species and the abundance variation in the observed samples, it is possible to 154 

assess the degree of dispersion of the probability values. The range of variation 155 

therefore allows testing a climate-change scenario and obtaining a model that allows 156 

projection of how the species will behave within the limits of this model. 157 

Population census data were analyzed for seven anuran species (Atelopus 158 

manauensis (n=21), Leptodactylus pentadactylus (n=63), Leptodactylus rhodomystax 159 

(n=15), Osteocephalus oophagus (n=3222), Pristimantis fenestratus (n=6702), 160 

Synapturanus mirandariberoi (n=1459) and Synapturanus salseri (n=996)) and average 161 
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climatological data (average temperature, maximum temperature, relative humidity of 162 

the air and precipitation) for the different collection periods. Linear and logarithmic 163 

regressions were used to test the relationship between the population activity of these 164 

seven species in relation to climatic oscillations.  165 

Sampling was performed by visual and auditory means simultaneously (Crump 166 

and Scott 1994) considering only mature individuals. The measure of “population 167 

density” is the abundance of individuals per sampling period. Each sampling period 168 

lasted an average of 49 days with two observers searching the plots for 2 hours per day, 169 

each sampling period having 196 hours of observation (49 days × 2 hours per day × 2 170 

observers). The plots were 250 × 40 m (1 ha) in area (Magnusson et al. 2005), and in the 171 

shorter sampling periods the number of plots was increased to keep the sampling effort 172 

constant. Due to gaps in the climatic data and the aggregation of the anuran population 173 

data by season in Menin et al. (2008), we used the values for temperature and relative 174 

humidity of the air provided by the National Institute of Meteorology (INMET 2023); 175 

precipitation data were collected during the anuran collection itself (See. Appendix S1).  176 

Both analyses of continuous data and of aggregated data have been used in 177 

ecological studies, with losses and gains between these two types of analysis depending 178 

on the question to be answered (Gotelli and Ellison 2004; Magurran 2004; Magnusson 179 

and Mourão 2005). Aggregated individual abundance data are common in ecological 180 

analyses (Gotelli and Ellison 2004). Here, the aggregation of biological data by season 181 

makes it possible to visualize the population response of each species to climate change 182 

in each season. Climatic anomalies that may occur on certain days, or local stochastic 183 

effects in certain plots, do not tend to generate outliers or sampling artifacts in the data 184 

analysis. This also allows us to have greater reliability in population density projections 185 

in relation to future climate change (Mills 2013) because the data are for censuses of 186 

active individuals over a long period with an established climate pattern. Grouping the 187 

data avoids population fluctuations based on the gradual change in temperature or 188 

humidity through the course of the day. 189 

Statistical analyses  190 

 191 

We performed simple linear regressions, together with tests of homoscedasticity 192 

using the Bartlett test (Bartlett 1937) and Shapiro Wilk normality tests (Shapiro and 193 

Wilk 1965) (See. Appendix S2 and S3). Subsequently, data on the abundance of 194 

individuals in relation to climate variables were projected through logarithmic 195 

regressions using the least-squares method (Luenberger 1997; Tang and Wang 2001) in 196 

relation to the annual progression of climate variables predicted for this area from 2002 197 

to 2100 by the RCP 8.5 scenario of the IPCC’s fifth assessment report (AR5) (IPCC 198 

2014; 2022; Magrin et al. 2014). We used a natural logarithm distribution. Least squares 199 

can be derived as a method-of-moments estimator (Luenberger 1997) and are used here 200 

to estimate the moments of the frog population declines assuming the progression of 201 

climate change projected under the RCP 8.5 scenario (IPCC 2014; Magrin et al. 2014). 202 

We only tested the average and maximum effect of temperature on the species since an 203 

increase in temperature is expected by the RCP 8.5 model. Annual estimates under the 204 

RCP 8.5 scenario were taken from Science on a Sphere (2023). These models are well-205 

suited for calculating local changes based on the least-squares method (Tang and Wang 206 

2001). This method has advantages over other regression tests commonly used in 207 

ecology due to its capacity to generate scenarios that enlarge the range of projections 208 

(Carrascal et al. 2009). All analyses were run in Statistica 8 software (Statsoft 2007). 209 
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 210 

RESULTS: 211 

 212 

Linear regressions (Fig. 2) showed that at least one of the climatic variables 213 

significantly influenced the activities of three of the seven species studied: Atelopus 214 

manauensis in relation to the average temperature of the air (n=21, p = 0.01, R2 = 0.87); 215 

Leptodactylus rhodomystax in relation to the average temperature of the air (n=15, p = 216 

0.01, R2 = 0.91) and; Synapturanus mirandaribeiroi in relation to the precipitation 217 

(n=1459, p = 0.05, R2 = 0.77). 218 

Results for two additional species are suggestive of climate effects but were not 219 

significant at the p<0.05 level: Leptodactylus pentadactylus with a value of activity of 220 

this species with a suggestive relation to precipitation (n=996, p = 0.07, R2 = 0.70). In 221 

addition, Synapturanus mirandaribeiroi had a suggestive relation to precipitation 222 

average temperature of the air (n=1459, p = 0.07, R2 = 0.69), in addition to its 223 

significant relation to precipitation. 224 
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 225 
Figure 2. Relationships between the population density (calling individuals per sampling period) of the 226 
seven target species in the study and the climate variables for the collection area. 227 

 228 
Due to lack of data on the thermal tolerance thresholds of species that responded 229 

positively to temperature increase, we did not project population trends for these 230 

species. Logarithmic regressions indicated that L. rhodomystax would have reduced 231 
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activity under the climate projected for the middle and the end of the current century 232 

based on the relationships between population density and climatic variables (Fig. 3). 233 

An increase in the annual mean temperature in the frogs’ habitat to a level above 30 °C 234 

tends to eliminate the activity of L. rhodomystax. Increases of 2 to 4 °C in the annual 235 

average temperature in the central Amazon would decrease the activity of this species, 236 

causing lower recruitment of individuals and population declines.  237 
 238 
 239 

 240 

 241 
Figure 3. Effect of projected climate change on L. rhodomystax population densities per hectare in 242 
response to increases in the annual average temperature in the central Amazon.  The maps show the 243 
projected climate in the mid-21st century (2050) and the late 21st century (2100) (Magrin et al. 2014).  244 
 245 

Our results point to a decrease in the density (calling individuals per hectare) of 246 

L. rhodomystax due to increased average annual temperature, with the possibility of 247 

extinction of the species in the next 20 years. These results indicate that the density of 248 

active individuals would decrease substantially in the next decades. Monthly 249 

fluctuations in humidity and temperature naturally occur in the central Amazon, causing 250 

the density of active individuals indicated here to vary over the course of the year. The 251 

reductions indicated here are per hectare at the location of the plots, and declines in 252 

other populations are likely because of reductions in the distribution areas of these 253 

species.  254 

 255 

DISCUSSION: 256 

 257 

Anurans in the central Amazon had a strong response to climate and can be 258 

considered as bioindicators of climate change. Our results indicate that species with 259 

different ecological habits and adaptations may respond differently to certain climatic 260 

variables (see methods), and their activity may be negatively affected by both the 261 

average and the maximum temperatures, since changes in climate range affect tolerance 262 

limits of frogs, as is the case for the observed climatic oscillations in the central Amazon 263 

at present. The different thermal sensitivities of anuran species point to the need to 264 

classify species according to their ecological habits in studies at the landscape level, as 265 

in the studies by Urbina-Cardona et al. (2006) and Ferrante et al. (2017). 266 

We note that the RCP 8.5 scenario from the IPCC’s fifth assessment report 267 

(AR5) (IPCC 2014) has been criticized as being overly pessimistic in its emissions 268 

assumptions for the remainder of this century, especially with regard to use of coal (e.g., 269 
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Ritchie and Dowlatabadi 2017). However, the RCP 8.5 scenario’s best estimate for 270 

global mean temperature increase by 2100 (4.8 ºC relative to the 1850–1900 mean) is 271 

only slightly higher than the SSP5-8.5 estimate in the AR6 (4.4 ºC) (IPCC 2022). While 272 

restraining global emissions to levels below those used in these scenarios is hoped to 273 

occur, analyses assuming unrestrained emissions have value in illustrating the 274 

consequences of continued insufficient action in mitigating global warming. While 275 

assumptions regarding the use of coal create upward bias, these scenarios also contain 276 

biases in the downward direction by not including a variety of “indirect” emissions 277 

sources (e.g., Barros and Fearnside 2019). In addition, with the increase in the use of 278 

fossil fuels (Ferrante and Fearnside 2023) and the success of “ruralist” politicians in 279 

Brazil in dismantling many of the protections of the Amazon forest (Ferrante and 280 

Fearnside 2019; Ferrante 2023), which doubled carbon emissions in the Amazon (Gatti 281 

et al. 2023), make the most pessimistic scenarios today, such as RCP 8.5, conservative 282 

for the climate change expected in the region. 283 

Ongoing climate change has already led to an increase in annual mean 284 

temperature in the Amazon rainforest (Marengo et al. 2021), with forecasts of a 285 

continued increase reaching up to 8 C in some areas of the Amazon by the end of the 286 

century (IPCC 2014, 2022). In addition to the expected changes in average temperature 287 

precipitation and wind patterns, extreme weather events are expected to increase greatly 288 

both in terms of frequency and intensity (IPCC 2014, 2022). According to our data, 289 

these climate changes may negatively affect the population dynamics of frogs in the 290 

central Amazon. 291 

Data on population declines and local extinctions of frogs caused by climate 292 

change in the Amazon region are still scarce (Stuart et al. 2008), although some 293 

population declines have already been observed due to other threats, such as the use of 294 

herbicides (Ferrante and Fearnside 2020a). The data presented here shed light on how 295 

Amazonian frog populations may react in the face of climate change by the end of this 296 

century.  297 

Physiological studies have shown that some Brazilian amphibians lack adaptive 298 

plasticity even to seemingly small increases in temperature, negatively affecting their 299 

physiological performance in the larval stage (Longhini et al. 2021). This reinforces the 300 

hypothesis of declines and extinctions in the face of climate change. The decline of 301 

amphibian populations is also related to climate change due to ultraviolet radiation 302 

(Blaustein and Kiesecker 2002; Blaustein et al. 1994, 2001). This could prove to be 303 

catastrophic for local anuran populations because higher incidence of ultraviolet 304 

radiation is expected for the central Amazon (IPCC 2022). Amphibian eggs are sensitive 305 

to increases in ultraviolet radiation, consequently causing high mortality of embryos 306 

(Blaustein et al. 1994). This would have a profound impact, especially on diurnal 307 

species such as A. manauensis (Menin et al. 2008). The climatic optimum for this 308 

species is currently in a range of warm average temperatures (Fig. 2), but the behavior of 309 

the species may change given the high temperatures predicted in climate-change 310 

scenarios for the central Amazon.  311 

Extreme weather events have already caused the extinction of several amphibian 312 

species in Central and South America (Pounds and Crump 1994; Pounds et al. 1999; 313 

Stuart et al. 2008). The frequency of extreme drought events (due to strong El Niño 314 

episodes) has increased in the Amazon Basin since the 1970s, departing from the long-315 

term pattern that had predominated since 1901 (Paredes-Trejo et al. 2021). 316 

“Unprecedented” droughts are projected to occur in Amazonia in the coming decades 317 

(Kay et al. 2022). Climate change that is already underway across South America, 318 

including tropical forests such as the Amazon and Atlantic Forests (Stuart et al. 2008), 319 



10 

 

motivated the inclusion of climate change in the Brazilian Amphibian Conservation 320 

Action Plan (Verdade et al. 2012).  321 

Future scenarios proposed through modeling portend a worldwide loss of 322 

amphibian species through climate change, with some groups being more threatened 323 

than others (Loyola et al. 2013). Our results suggest that even common species, such as 324 

L. rhodomystax, can be expected to undergo reductions in their population densities as a 325 

result of the increase of temperature (by 2100 under the RCP 4.5 scenario, which, unlike 326 

the RCP 8.5 scenario, assumes substantial reductions in global greenhouse-gas 327 

emissions). We should therefore expect decreases in the activity levels of these anurans 328 

in the central Amazon. This would result in lower recruitment of individuals and 329 

population declines of these species.  330 

The impact of increases in the annual mean values of climatic variables are 331 

much more serious than only anuran population declines, as climate change affects 332 

much more than the activity of frogs (Costa et al. 2020). There are also threats to the 333 

central Amazon from burning (Fearnside 2021), land grabbing (Ferrante et al. 2021b), 334 

illegal logging (Andrade et al. 2021), illegal mining (Ferrante and Fearnside 2022a), and 335 

the expansion of agriculture and cattle ranching (Ferrante and Fearnside 2018, 2020a, 336 

2020b, 2022b; Ferrante et al. 2021c). These multiple threats have substantial impacts on 337 

forest structure and consequently affect the microclimate, which in turn affects both the 338 

richness and the abundance of amphibians (Urbina-Cardona et al. 2006; Ferrante et al. 339 

2017). Shifts in the amplitude of variation in climatic variables may force species 340 

generally to the limits of their physiological tolerance and restrict their geographical 341 

distributions (Mills 2013). Loss of certain species in an ecosystem can collapse trophic 342 

chains and unbalance the dynamics of populations of other species, causing extinctions 343 

at the local and regional levels or for the species as a whole (Zipkin et al. 2020; Strona 344 

and Bradshaw 2022). Endemic species, such as A. manauensis, are likely to be the most 345 

affected due to their restricted geographical distributions (Jorge et al. 2020). The species 346 

in the present study can be considered to constitute an umbrella species group whose 347 

conservation would confer protection to a large number of naturally co-occurring 348 

species. The loss of amphibian species around the world has triggered a cascade effect, 349 

which has affected other taxonomic groups, mainly predators, as is already seen in 350 

Neotropical snakes (Zipkin et al. 2020). Our results warn of a potential widespread loss 351 

of biodiversity in the central Amazon by 2050 and even greater impacts by 2100, as 352 

anurans are bioindicators for declines in other taxonomic groups (Zipkin et al. 2020). It 353 

is crucial that Brazil adopt measures to mitigate climate change and to protect 354 

biodiversity. 355 

The threat to Amazon biodiversity (by climate change documented here) is 356 

embedded in a context of widespread destruction of the region’s native ecosystems by 357 

deforestation, logging, forest fires, mining, dams, and other economic ventures (e.g., 358 

Fearnside 2021). These processes accelerated under the 2019-2022 Jair Bolsonaro 359 

presidential administration in Brazil, with the dismantling of the country’s 360 

environmental agencies, including hundreds of changes in internal operating rules in 361 

ways that impede enforcement of environmental regulations, multiple legislative 362 

changes loosening environmental restrictions, and a constant discourse denying 363 

scientific results on climate, deforestation, and fire and suggesting that environmental 364 

crimes would be ignored or pardoned (Ferrante and Fearnside 2019; Diele-Viegas et al. 365 

2021; da Silva and Fearnside 2022). Many of these setbacks will have lasting effects 366 

irrespective of current and future efforts to reverse them. Building roads, for example, 367 

allows migrations and unleashes processes that are largely outside of government 368 

control, a fact that is particularly relevant to the central Amazon given the advance of a 369 
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project to reconstruct Highway BR-319 connecting this relatively intact area to Brazil’s 370 

“arc of deforestation” (Andrade et al. 2021; Ferrante et al. 2021a,b; Fearnside 2022). 371 

President Luiz Inácio Lula da Silva, who took office in January 2023, has promised to 372 

reduce deforestation, but restoring the control capacities of environmental agencies will 373 

not be enough because avoiding large-scale habitat loss in the central Amazon will also 374 

require blocking major projects such as the reconstruction of Highway BR-319 and 375 

opening oil and gas fields in the proposed Solimões Sedimentary Basin project (e.g., 376 

Bustamante et al. 2023; Ferrante and Fearnside 2023; Vilani et al. 2023).  377 

In addition to contributing to the climate change that would affect frogs and 378 

other groups, the deforestation provoked by BR-319 and its associated side roads would 379 

have severe impacts on biodiversity through habitat loss (Magnusson 2020; Ferrante et 380 

al. 2021a). Highway BR-319 would bring to the central Amazon the land-use change 381 

processes already present in Brazil’s “arc of deforestation.” This would be catastrophic 382 

for Amazonian amphibians. In addition to habitat loss and a contribution to the climate 383 

change that threatens these species, the highway is likely to act as a disperser of new 384 

pathogens that are lethal to amphibians, such as the fungus Batrachochytrium 385 

dendrobatidis (Bd) (Becker et al. 2016). Bd has already been recorded in the “arc of 386 

deforestation” (Becker et al. 2016), and Highway BR-319 would offer a direct route for 387 

the fungus to spread to the central Amazon. The massive population declines of 388 

amphibians for the central Amazon that the present study suggests because of projected 389 

climate change are therefore conservative due to the other simultaneous threats resulting 390 

from the BR-319 project. The BR-319 project’s direct and indirect threats to frogs add 391 

to the many reasons indicating that the project should not be undertaken (Fearnside 392 

2022). 393 

Control of Brazil’s National Congress by the “ruralist” voting block has been 394 

increased by the 2022 elections (ClimaInfo 2022), suggesting likely passage in the 395 

coming months and years of a series of proposed laws further weakening environmental 396 

control, facilitating Amazonian land grabbing, and opening indigenous lands to 397 

agribusiness, mining and other activities by nonindigenous people (Ferrante and 398 

Fearnside 2021, 2022c; Ruaro et al. 2021, 2022). The combination of impacts from 399 

climate change and from habitat destruction by direct human action implies massive 400 

losses of Amazonian biodiversity (e.g., Joly et al. 2019). However, both Brazil’s 401 

policies affecting deforestation and global accords on measures to contain climate 402 

change are subject to human decisions, and efforts must not be spared to avoid the bleak 403 

future that current trends imply. 404 

 405 

CONCLUSION: 406 

 407 

The population density of anurans in the central Amazon is strongly influenced 408 

by temperature, precipitation, and relative humidity. By the end of the 21st century, 409 

projected climate change would even affect the population dynamics of common species 410 

that today are considered to be out of danger, causing population declines and possibly 411 

local extinctions in many species through extreme climatic events. Habitat loss from 412 

deforestation and other direct anthropogenic impacts further increase the risks to frogs 413 

and other groups in the central Amazon. 414 
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Appendix S2. Normality tests (Shapiro-Wilk test):  

 

Shapiro-Wilk results: 

A. spumarinus  
W: 0.7478694  
p-value: 0.02843795  
A. spumarinus has explosive reproduction, which tends to interfere with the 
density of individuals and which explains the absence of normality for this species. 
--------------------------- 
L. pentadactylus  
W: 0.8332792  
p-value: 0.1471844  
There is no evidence to reject the null hypothesis of normality. 
--------------------------- 
O. oophagus  
W: 0.981019  
p-value: 0.9399969  
There is no evidence to reject the null hypothesis of normality. 
--------------------------- 
L. rhondonmystax  
W: 0.8327445  
p-value: 0.1458437  
There is no evidence to reject the null hypothesis of normality. 
--------------------------- 
P. fenestratus  
W: 0.925325  
p-value: 0.5648562  
There is no evidence to reject the null hypothesis of normality. 
--------------------------- 
S. mirandariberoi  
W: 0.8767309  
p-value: 0.2947585  
There is no evidence to reject the null hypothesis of normality. 
--------------------------- 
S. salseri  
W: 0.874595  
p-value: 0.2855315  
There is no evidence to reject the null hypothesis of normality. 
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Shapiro-Wilk graphs:  



 

5 
 

 

 

 

 



 

6 
 

 

Appendix S3. Homoscedasticity test: 

Largest set of species with homogeneity of variances: L. pentadactylus 
(n=63), L. rhodomystax (n=15), O. oophagus (n=3222), P. fenestratus 
(n=6702), S. mirandariberoi (n=1459) and S. salseri (n=996). 

p >0.05 (There is no evidence to reject homoscedasticity) 

L. pentadactylus: Average: 12.60, Variance: 8.24. 
L. rhodomystax: Average: 3.00, Variance: 1.20. 
O. oophagus: Average: 644.40, Variance: 58124.24. 
P. fenestratus: Average: 1340.40, Variance: 371489.04. 
S. mirandariberoi: Average: 291.80, Variance: 58563.76. 
S. salseri: Average: 199.20, Variance: 26727.76. 
 

* A. manauensis does not show homoscedasticity in relation to the other species; 
these results may have been influenced by the explosive reproduction habit of this 
species. 

 


