This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

e935b3886042f645cda6c5f4dc6b024ad6e261a4a2d4ea0b9975941c05c363ba

To view the reconstructed contents, please SCROLL DOWN to next page.

Detection of agricultural fires in the State of Acre with GEE and QGIS

 Francisco Salatiel Clemente de Souza^{1*}, Sonaira S. Silva¹, Liana O. Anderson², Philip M. Feanrside³, Marcus A. Liesenfeld¹, Igor Oliveira¹, Thiago Morello⁴, Adriele Karlokoski¹, Tiago Lucena da Silva¹, Marllus Rafael N. Almeida¹, Luiz E. O. C. Aragão⁵, Foster Brown^{1.6}, Jessica Costa¹, Antonio Willian F. Melo¹, Paulo Maurício L. A. Graça¹, Paulo M. Brando^{6,7}, Ane Alencar⁷

¹Universidade Federal do Acre(Ufac), Cruzeiro do Sul, Brasil

²Centro Nacional de Monitoramento e Alertas de Desastres Naturais (Cemaden), São José dos Campos, Brasil

³Instituto Nacional de Pesquisas da Amazônia (Inpa), Manaus, Brasil

⁴Universidade Federal do ABC (UFABC), São Bernardo do Campo, Brasil

⁵Instituto Nacional de Pesquisas Espaciais (Inpe), São José dos Campos, Brasil

⁶Woods Hole Research Center (WHRC), Falmouth, Estados Unidos

⁷Instituto de Pesquisa Ambiental da Amazônia (Ipam), Brasília, Brasil

*e-mail: salatielclemente@gmail.com

ABSTRACT - Herein we aimed to test four supervised classifiers to map forest scars caused by agricultural burning activities, and also evaluate time-quality ratio accuracy. In the last decade, while deforestation rates decreased, the number of thermal hotspots increased through Amazonia. Monitoring forest burnings is important to identify and map location and trend of active burnings in real-time. However, such procedure is usually based on detection of isolated thermal hotspots on the surface, which do not allow evaluation of the size of areas affected by fire. As cloud image processing evolves and provides new tools, as Google Earth Engine (GEE), it became possible to detect and monitoring areas impacted by fire in fast and agile ways. Nevertheless, testing the efficiency of algorithms to balance commission and omission errors in the final product is pivotal. Thus, we tested four supervised classifiers (maximum likelihood, decision tree learning (CART), random forest, and minimum distance) in physical and cloud environments by the use of QGIS and GEE, respectively. We evaluate time spent (minutes) in each classification of the Landsat 8's scene 005/066, within a computer with the following configuration: Intel Core i7 processor, graphic card NVIDIA, 8Gb memory RAM ddr3. We considered four classes: forest, deforestation, burnings, and bodies of water; with 20 samples for each class. Time spent with QGIS was 90 minutes: 40 minutes to download images, 13 minutes sampling the classes, and 37 minutes to obtain outputs after application of algorithm. With GEE, time spent was 27 minutes: six minutes to sampling, one minute to apply algorithm, and 20 minutes to download classification. Minimum distance was the algorithm with best performance due to minor commission and confusion errors for bodies of water and deforestation classes. Cloud image processing is a large step for digital satellite image processing routine, as it saves time and offers several classification algorithms simultaneously. Products of monitoring forest burnings are an important source of information for decision makers, supervision, and agricultural practices, as well as, inclusion in platforms as TerraMA2.

Keywords: supervised classifiers, Google Earth Engine, QGIS